Climatic Change

, Volume 49, Issue 4, pp 441–462 | Cite as

The Late Maunder Minimum (1675–1715) – A Key Period forStudying Decadal Scale Climatic Change in Europe

  • J. Luterbacher
  • R. Rickli
  • E. Xoplaki
  • C. Tinguely
  • C. Beck
  • C. Pfister
  • H. Wanner


The Late Maunder Minimum (LMM, 1675–1715) denotes the climax of the `Little Ice Age' in Europe with marked climate variability. Investigations into interannual and interdecadal differences of atmospheric circulation between the LMM and the period 1961–1990 have been performedand undertaken based upon sea level pressure (SLP) difference maps, empiricalorthogonal function (EOF) analysis, and objective classification techniques. Since the SLP during the LMM winterwas significantly higher in northeastern Europe but below normal over the central and western Mediterranean, more frequent blocking situations were connected with cold air outbreaks towards central and eastern Europe. Springs were cold and characterized by a southward shift of the mid-latitude storm tracks. Summers in western, central Europe and northern Europe were wetter and slightly cooler than they are today due to a weakerAzores high and a more southerly position of the mean polar front axes. Autumns showed a significantly higher pressure over northern Europe and a lower pressure over continental Europe and the Mediterranean, an indication of an advanced change from summer to winter circulation. It is suggested that the pressure patterns during parts of the LMM might be attributed to the combination of external forcing factors (solar irradiance and volcanic activity) and internal oscillations and couplings in the North Atlantic.


Solar Irradiance Storm Track Southward Shift Internal Oscillation Frequent Blocking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alcoforado, M. J., Nuñes, M. F., Garcia, J. C., and Taborda, J. P.: 2000, ‘Temperature and Precipitation Reconstructions in Southern Portugal during the Late Maunder Minimum (1675 to 1715)’ The Holocene 10, 333–340.Google Scholar
  2. Barriendos, M.: 1997, ‘Climatic Variations in the Iberian Peninsula during the Late Maunder Minimum (AD 1675-1715): An Analysis of Data from Rogation Ceremonies’ The Holocene 7, 105–111.Google Scholar
  3. Beck, C.: 1999, Zirkulationsdynamische Variabilität im Bereich Nordatlantik-Europa seit 1780, Ph.D. Thesis, University of Würzburg.Google Scholar
  4. Beck, C. and Jacobeit, J.: 1997, ‘Nordatlantisch-europäische Zirkulations-veränderungen zwischen frühinstrumenteller Periode (1780-1860) und diesem Jahrhundert’ Ann. Meteorol. 34, 63–64.Google Scholar
  5. Beer, J., Mende, W., and Stellmacher, R.: 2000, ‘The Role of the Sun in Climate Forcing’ in Alverson, K. et al. (eds.), Past Global Changes and their Significance for the Future, Quatern. Sci. Rev. 19, pp. 403–415.Google Scholar
  6. Bertrand, C., van Ypersele J.-P., and Berger, A.: 1999, ‘Volcanic and Solar Impacts on Climate since 1700’ Clim. Dyn. 15, 355–367.Google Scholar
  7. Borisenkov, Y. P.: 1994, ‘Climatic and Other Natural Extremes in the European Territory of Russia in the Late Maunder Minimum (1675-1715)’ in Frenzel, B., Pfister, C., and Glaeser B. (eds.), Climatic Trends and Anomalies in Europe 1675-1715, Gustav Fischer Verlag, Stuttgart, Jena, New York, pp. 83–94.Google Scholar
  8. Bradley, R. S. and Jones, P. D.: 1993, ‘Little Ice Age Summer Temperature Variations: Their Nature and Relevance to Recent Global Warming Trends’ The Holocene 3, 367–376.Google Scholar
  9. Brázdil, R., Dobrovolny, P., Chocholác, B., and Munzar, J.: 1994, ‘Climatic and Other Natural Extremes in the European Territory of Russia in the Late Maunder Minimum (1675-1715)’ in Frenzel, B., Pfister, C., and Glaeser B. (eds.), Climatic Trends and Anomalies in Europe 1675-1715, Gustav Fischer Verlag, Stuttgart, Jena, New York, pp. 83–94.Google Scholar
  10. Briffa, K. R.: 1994, ‘Tree-Ring Evidence of Northern Fennoscandian Summer Temperatures during the Maunder Minimum Period’ in Frenzel, B., Pfister, C., and Glaeser, B. (eds.), Climatic Trends and Anomalies in Europe 1675-1715, Gustav Fischer Verlag, Stuttgart, Jena, New York, pp. 23–32.Google Scholar
  11. Briffa, K. R.: 2000, ‘Annual Climate Variability in the Holocene: Interpreting the Message of Ancient Trees’ in Alverson, K. et al. (eds.), Past Global Changes and their Significance for the Future, Quatern. Sci. Rev. 19, pp. 87–106.Google Scholar
  12. Briffa, K. R., Jones, P. D., Schweingruber, F. H., and Osborn, T. J.: 1998, ‘Influence of Volcanic Eruptions on Northern Hemisphere Summer Temperature over the Past 600 Years’ Nature 393, 450–455.Google Scholar
  13. Brown, G. M. and John, J. I.: 1979, ‘Solar Cycle Influences in Tropospheric Circulation’ J. Atmos. Terr. Phys. 41, 43–52.Google Scholar
  14. Crowley, T. J.: 2000, ‘Causes of Climate Change over the Past 1000 Years’ Nature 289, 270–277.Google Scholar
  15. Crowley, T. J. and Kim, K.-Y.: 1999, ‘Modeling the Temperature Response to Forced Climate Change over the Past Six Centuries’ Geophys. Res. Lett. 26, 1901–1904.Google Scholar
  16. Cullen, C.: 1980, ‘Was there a Maunder Minimum?’ Nature 283, 427–428.Google Scholar
  17. Cushing, D. H. and Dickson, R. R.: 1976, ‘The Biological Response in the Sea to Climatic Changes’ Adv. Mar. Biol. 14, 1–122.Google Scholar
  18. D'Arrigo, R. D., Jacoby, G. C., Free, M., and Robock, A.: 1999, ‘Northern Hemisphere Temperature Variability for the Past Three Centuries: Tree-Ring and Model Estimates’ Clim. Change 42, 663–675.Google Scholar
  19. Dickson, R. R., Meincke, J., Malmberg, S.-A., and Lee, A. J.: 1988, ‘The “Great Salinity Anomaly” in the Northern North Atlantic 1968-1982’ Prog. Oceanogr. 20, 103–151.Google Scholar
  20. Eddy, J. A.: 1976, ‘The Maunder Minimum’ Science 192, 1189–1202.Google Scholar
  21. Eden, C. and Jung, T.: 2001, ‘North Atlantic Interdecadal Variability: Oceanic Response to the North Atlantic Oscillation (1865-1997)’ J. Climate in press.Google Scholar
  22. Etheridge, D. M., Steele, L. P., Francey, R. J., and Langenfelds, R.: 1998, ‘Atmospheric Methane between 1000 AD and Present: Evidence for Anthropogenic Emissions and Climate Variability’ J. Geophys. Res. 103, 15979–15993.Google Scholar
  23. Free, M. and Robock, A.: 1999, ‘Global Warming in the Context of the Little Ice Age’ J. Geophys. Res. 104, 19057–19070.Google Scholar
  24. Gerstengarbe, F. W. and Werner, P. C.: 1997, ‘A Method to Estimate the Statistical Confidence of Cluster Separation’ Theor. Appl. Climatol. 57, 103–110.Google Scholar
  25. Haigh, J. D.: 1994, ‘The Role of Stratospheric Ozone in Modulating the Solar Radiative Forcing of Climate’ Nature 370, 544–546.Google Scholar
  26. Haigh, J. D.: 1996, ‘The Impact of Solar Variability on Climate’ Science 272, 981–984.Google Scholar
  27. Haigh, J. D.: 2000, ‘Solar Variability and Climate’ Weather 55, 399–407.Google Scholar
  28. Holzhauser, H. P. and Zumbühl, H. J.: 1988, ‘Alpengletscher in der Kleinen Eiszeit’ in Die Alpen /64/3, Stämpfli, Bern.Google Scholar
  29. Hurrell, J. W.: 1995, ‘Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation’ Science 269, 676–679.Google Scholar
  30. Hurrell, J. W.: 1996, ‘Influence of Variations in Extratropical Wintertime Teleconnections on Northern Hemisphere Temperature’ Geophys. Res. Lett. 23, 665–668.Google Scholar
  31. Hurrell, J. W. and van Loon, H.: 1997, ‘Decadal Variations in Climate Associated with the North Atlantic Oscillation’ Clim. Change 36, 301–326.Google Scholar
  32. Huth, R.: 1996, ‘An Intercomparison of Computer-Assisted Circulation Classification Methods’ Int. J. Clim. 16, 893–922.Google Scholar
  33. Hyde, W. T. and Crowley, T. J.: 2000, ‘Probability of Future Climatically Significant Volcanic Eruptions’ J. Climate (Lett.) 13, 1445–1450.Google Scholar
  34. Ikeda, M.: 1990, ‘Decadal Oscillation of the Air-Ice-Ocean System in the Northern Hemisphere’ Atmos.-Ocean 31, 106–139.Google Scholar
  35. Jones, P. D., Briffa, K. R., Barnett, T. P., and Tett, S. F. B.: 1998, ‘High-Resolution Palaeoclimatic Records for the Last Millenium: Interpretation, Integration and Comparison with General Circulation Model Control-Run Temperatures’ The Holocene 8, 455–471.Google Scholar
  36. Kington, J.: 1995, ‘The Severe Winter of 1694/95’ Weather 50, 160–163.Google Scholar
  37. Kington, J.: 1997, ‘The Severe Winter of 1696/97’ Weather 52, 386–391.Google Scholar
  38. Kington, J.: 1999, ‘The Severe Winter of 1697/98’ Weather 54, 43–49.Google Scholar
  39. Koslowski, G. and Glaser, R.: 1999. ‘Variations in Reconstructed Ice Winter Severity in the Western Baltic from 1501 to 1995, and their Implications for the North Atlantic Oscillation’ Clim. Change 41, 175–191.Google Scholar
  40. Kushnir, Y.: 1994, ‘Interdecadal Variations in North Atlantic Sea Surface Temperature and Associated Atmospheric Conditions’ J. Climate 7, 142–157.Google Scholar
  41. Kushnir, Y. and Held, I. M.: 1996, ‘Equilibrium Atmospheric Response to North Atlantic SST Anomalies’ J. Climate 9, 1208–1220.Google Scholar
  42. Lachiver, M.: 1991, Les années de misère, Fayard, Paris.Google Scholar
  43. Lamb, H. H.: 1979, ‘Climatic Variations and Changes in the Wind and Ocean Circulation. The Little Ice Age in the Northeast Atlantic’ Quartern. Res. 11, 1–20.Google Scholar
  44. Lamb, H. H.: 1982, Climate, History and the Modern World, Methuen, London.Google Scholar
  45. Landsberg, H. E.: 1980, ‘Variable Solar Emissions, the MaunderMinimum and Climatic Temperature Fluctuations’ Arch. Meteorol. Geophys. Bioklim. B28, 181.Google Scholar
  46. Lean, J.: 2000, ‘Evolution of the Sun' Spectral Irradiance since the Maunder Minimum’ Geophys. Res. Lett. 27, 2425–2428.Google Scholar
  47. Lean, J. and Rind, D.: 1999, ‘Evaluating Sun-Climate Relationships since the Little Ice Age’ J. Atmos. Sol.-Terr. Phys. 61, 25–36.Google Scholar
  48. Lean, J., Beer, J., and Bradley, R. S.: 1995, ‘Reconstruction of Solar Irradiance since 1610: Implications for Climate Change’ Geophys. Res. Lett. 22, 3195–3198.Google Scholar
  49. Luterbacher, J.: 2000, ‘The Late Maunder Minimum (AD 1675-1715) - Climax of the Little Ice Age in Europe’ in Jones, P. D., Davies, T. D., Ogilvie, A. E. J., and Briffa, K. R. (eds.), Climate Impacts: The Last 1000 Years, Climatic Research Unit, University of East Anglia, Norwich, U.K., Kluwer Academic Publishers, in press.Google Scholar
  50. Luterbacher, J., Schmutz, C., Gyalistras, D., Xoplaki, E., and Wanner, H.: 1999, ‘Reconstruction of Monthly NAO and EU Indices Back to 1675’ Geophys. Res. Lett. 26, 2745–2748.Google Scholar
  51. Luterbacher, J. and 33 co-authors: 2000, ‘Monthly Mean Pressure Reconstruction for the Late Maunder Minimum Period (AD 1675-1715) Based on Canonical Correlation Analysis’ Int. J. Climatol. 20, 1049–1066.Google Scholar
  52. Mann, M. E., Bradley, R. S., and Hughes, M. K.: 1998, ‘Global-Scale Temperature Patterns and Climate Forcing over the Past Six Centuries’ Nature 392, 779–787.Google Scholar
  53. Maunder, E. W.: 1922, ‘The Prolonged Sunspot Minimum 1675-1715’ Brit. Astron. Ass. J. 32, 140–145.Google Scholar
  54. NCAR, 1997: Trenberth' Northern Hemispheric Sea Level Pressure, 5_ _ 5_, Monthly, DSS/D/DS010.1 dataset, Boulder, CO.Google Scholar
  55. Ogilvie, A. E. J.: 1996, ‘Sea Ice Conditions Off the Coasts Iceland A.D. 1601-1850 with Special Reference to Part of the Maunder Minimum Period (1675-1715)’ AmS-Varia 25, Archaeological Museum of Stavanger, Norway, 9–12.Google Scholar
  56. Osborn, T. J., Briffa, K. R., Tett, S. F. B., Jones, P. D., and Trigo, R. M.: 1999, ‘Evaluation of the North Atlantic Oscillation as Simulated by a Coupled Climate Model’ Clim. Dyn. 15, 685–702.Google Scholar
  57. Overpeck, J. and 17 co-authors: 1997, ‘Arctic Environmental Change of the Last Four Centuries’ Science 278, 1251–1256.Google Scholar
  58. Peng, S. and Mysak, L. A: 1993, ‘A Teleconnection Study of Interannual Sea Surface Temperature Fluctuations in the North Atlantic and Precipitation and Runoff overWestern Siberia’ J. Climate 6, 876–885.Google Scholar
  59. Pfister, C.: 1994a, ‘Spatial Patterns of Climatic Change in Europe 1675-1715’ in Frenzel, B., Pfister, C., and Glaeser, B. (eds.), Climatic Trends and Anomalies in Europe 1675-1715, Fischer, Stuttgart, pp. 287–317.Google Scholar
  60. Pfister, C.: 1994b, Bevölkerungsgeschichte und Historische Demographie 1500-1800, Enzyklopädie Deutscher Geschichte, Vol. 29, München.Google Scholar
  61. Pfister, C.: 1999, Wetternachhersage. 500 Jahre Klimavariationen und Naturkatastrophen 1496- 1995, Paul Haupt Verlag, Bern, Stuttgart,Wien.Google Scholar
  62. Preisendorfer, R. W.: 1988, Principal Component Analysis in Meteorology and Oceanography, Elsevier, Amsterdam.Google Scholar
  63. Reverdin, G., Cayan, D. R., and Kushnir, Y.: 1997, ‘Decadal Variability of Hydrography in the Upper Northern North Atlantic, 1948-1990’ J. Geophys. Res. 102, 8505–8532.Google Scholar
  64. Rind, D. and Overpeck, J.: 1993, ‘Hypothesized Causes of Decade-to-Century Climate Variability: Climate Model Results’ Quat. Sci. Rev. 12, 357–374.Google Scholar
  65. Rind, D., Lean, J., and Healy, R.: 1999, ‘Simulated Time-Dependent Climate Response to Solar Radiative Forcing since 1600’ J. Geophys. Res. 104, 1973–1990.Google Scholar
  66. Robock, A.: 2000, ‘Volcanic Eruptions and Climate’ Rev. Geophys. 38, 191–219.Google Scholar
  67. Robock, A. and Mao, J.: 1995, ‘The Volcanic Signal in Surface Temperature Observations’ J. Climate 8, 1086–1103.Google Scholar
  68. Rodrigo, F. S., Esteban-Parra, M. J., Pozo-Vazquez, D., and Castro-Diez, Y.: 2000, ‘Rainfall Variability in Southern Spain on Decadal to Centennial Time Scales’ Int. J. Climatol. 20, 721–732.Google Scholar
  69. Schmutz, C. and Wanner, H.: 1998, ‘Low Frequency Variability of Atmospheric Circulation over Europe between 1875 and 1994’ Erdkunde 52, 81–94.Google Scholar
  70. Shindell, D., Rind, D., Balachandran, N., Lean, J., and Lonergan, P.: 1999, ‘Solar Cycle Variability, Ozone, and Climate’ Science 284, 305–308.Google Scholar
  71. Spörer, F.W. G.: 1887, ‘Ñber die Periodizität der Sonnenflecken seit dem Jahre 1618, vornehmlich in Bezug auf die heliographische Breite derselben, und Hinweis auf eine erhebliche Störung dieser Periodizität während eines langen Zeitraumes’ Vjschr. Astron. Ges. Leipzig 22, 323–329.Google Scholar
  72. Stuiver, M. and Braziunas, T. F.: 1993, ‘Sun, Ocean, Climate and Atmospheric 14CO2: An Evaluation of Causal and Spectral Relationships’ The Holocene 3, 289–305.Google Scholar
  73. Tinsley, B. A.: 1988, ‘The Solar Cycle and the QBO Influences on the Latitude of Storm Track in the North Atlantic’ Geophys. Res. Lett. 15, 409–412.Google Scholar
  74. Trudinger, C. M., Enting, I. G., Francey, R. J., and Etheridge, D.M.: 1999, ‘Long-Term Variability in the Global Carbon Cycle Inferred from a High-Precision CO2 and δ13C Ice-Core Record’ Tellus 51B, 233–248.Google Scholar
  75. Vinje, T.: 1997, ‘On the Variation during the Past 400 Years of the Barents Sea Ice Edge Position and Northern Hemisphere Temperatures’ inWCRP Symposium Polar Processes and Global Climate, p. 3.Google Scholar
  76. von Storch, H. and Zwiers, F. W.: 1999, Statistical Analysis in Climate Research, Cambridge University Press.Google Scholar
  77. Wanner, H., Holzhauser, H. P., Pfister, C., and Zumbühl, H.: 2000, ‘Interannual to Century Scale Climate Variability in the European Alps’ Erdkunde 54, 62–69.Google Scholar
  78. Wanner, H., Pfister, C., Brázdil, R., Frich, P., Frydendahl, K., Jónsson, T., Kington, J., Rosenørn, S., and Wishman, E.: 1995, ‘Wintertime European Circulation Patterns during the Late Maunder Minimum Cooling Period (1675-1704)’ Theor. Appl. Climatol. 51, 167–175.Google Scholar
  79. Wohlleben, T. M. H. and Weaver, A. J.: 1995, ‘Interdecadal Climate Variability in the Subpolar North Atlantic’ Clim. Dyn. 11, 459–467.Google Scholar
  80. Wuebbles, D. J., Wei, C.-F., and Patten, K. O.: 1998, ‘Effects on Stratospheric Ozone and Temperature during the Maunder Minimum’ Geophys. Res. Lett. 25, 523–526.Google Scholar
  81. Xoplaki, E., Maheras, P., and Luterbacher, J.: 2001, ‘Variability of Climate in Meridional Balkans during the Periods 1675-1715 and 1780-1830 and its Impact on Human Life’ Clim. Change, in press.Google Scholar
  82. Xu, Z. T. et al. (eds.): 2000, East Asian Astronomical Observations (East Asian Archaeoastronomy: Astronomical Observations in East Asia Historical Records), Gordon and Breach, in press.Google Scholar
  83. Yarnal, B.: 1993, Synoptic Climatology in Environment Analysis. A Primer, Belhaven Press, London and Florida.Google Scholar
  84. Zielinski, G. A.: 1995, ‘Stratospheric Loading and Optical Depth Estimated of Explosive Volcanism over the Last 2100 Years Derived from the Greenland Ice Sheet Project 2 Ice Core’ J. Geophys. Res. 100, 20937–20955.Google Scholar
  85. Zielinski, G. A.: 2000, ‘Use of Paleo-Records in Determining Variability within the Volcanism-Climate System’ in Alverson K. et al. (eds.), Past Global Changes and their Significance for the Future, Quat. Sci. Rev. 19, 417–438.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • J. Luterbacher
    • 1
  • R. Rickli
    • 1
  • E. Xoplaki
    • 1
    • 2
  • C. Tinguely
    • 1
  • C. Beck
    • 3
  • C. Pfister
    • 4
  • H. Wanner
    • 1
  1. 1.Institute of GeographyUniversity of BernBernSwitzerland
  2. 2.Department of Meteorology and ClimatologyUniversity of ThessalonikiGreece
  3. 3.Institute of GeographyJulius-Maximilians-UniversitätWürzburgGermany
  4. 4.Institute of HistoryUniversity of BernSwitzerland

Personalised recommendations