Advertisement

Plant Molecular Biology

, Volume 47, Issue 1–2, pp 55–72 | Cite as

A census of carbohydrate-active enzymes in the genome of Arabidopsis thaliana

  • Bernard Henrissat
  • Pedro M. Coutinho
  • Gideon J. Davies
Article

Abstract

The synthesis, modification, and breakdown of carbohydrates is one of the most fundamentally important reactions in nature. The structural and functional diversity of glycosides is mirrored by a vast array of enzymes involved in their synthesis (glycosyltransferases), modification (carbohydrate esterases) and breakdown (glycoside hydrolases and polysaccharide lyases). The importance of these processes is reflected in the dedication of 1–2% of an organism's genes to glycoside hydrolases and glycosyltransferases alone. In plants, these processes are of particular importance for cell-wall synthesis and expansion, starch metabolism, defence against pathogens, symbiosis and signalling. Here we present an analysis of over 730 open reading frames representing the two main classes of carbohydrate-active enzymes, glycoside hydrolases and glycosyltransferases, in the genome of Arabidopsis thaliana. The vast importance of these enzymes in cell-wall formation and degradation is revealed along with the unexpected dominance of pectin degradation in Arabidopsis, with at least 170 open-reading frames dedicated solely to this task.

Arabidopsis genome glycoside hydrolases glycosyltransferases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815.Google Scholar
  2. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25: 3389–3402.Google Scholar
  3. Aoki, S. and Syno, K. 1999. Horizontal gene transfer and mutation: ngrol genes in the genome of Nicotiana glauca. Proc. Natl. Acad. Sci. USA 96: 13229–13234.Google Scholar
  4. Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815.Google Scholar
  5. Benhamou, N. 1995. Immunocytochemistry of plant defense mechanisms induced upon microbial attack. Microsc. Res. Tech. 31 63–78.Google Scholar
  6. Bishop, J.G., Dean, A.M. and Mitchell-Olds, T. 2000. Rapid evolution in plant chitinases: molecular targets of selection in plant-pathogen coevolution. Proc. Natl. Acad. Sci. USA 97: 5322–5327.Google Scholar
  7. Burmeister, W.P., Cottaz, S., Rollin, P., Vasella, A. and Henrissat, B. 2000. High resolution X-ray crystallography shows that ascorbate is a cofactor for myrosinase and substitutes for the function of the catalytic base. J. Biol. Chem. 275: 39385–39393.Google Scholar
  8. Callebaut, I., Labesse, G., Durand, P., Poupon, A., Canard, L., Chomilier, J., Henrissat, B. and Mornon, J.P. 1997. Deciphering protein sequence information through hydrophobic cluster analysis (HCA): current status and perspectives. Cell. Mol. Life Sci. 53: 621–645.Google Scholar
  9. Campbell, J.A., Davies, G.J., Bulone, V. and Henrissat, B. 1997. A classification of nucleotide-diphospho-sugar glycosyltrans-ferases based on amino acid sequence similarities. Biochem. J. 326: 929–939.Google Scholar
  10. Campbell, P. and Braam, J. 1999. In vitro activities of four xy-loglucan endotransglycosylases from Arabidopsis. Plant J. 18: 371–382.Google Scholar
  11. Charnock, S.J., Bolam, D.N., Turkenburg, J.P., Gilbert, H.J., Ferreira, L.M., Davies, G.J. and Fontes, C.M. 2000. The X6 ‘thermostabilizing’ domains of xylanases are carbohydrate-binding modules: structure and biochemistry of the Clostridium thermocellum X6b domain. Biochemistry 39: 5013–5021.Google Scholar
  12. Charnock, S.J. and Davies, G.J. 1999. Structure of the nucleotidediphospho-sugar transferase, SpsA from Bacillus subtilis,in native and nucleotide-complexed forms. Biochemistry 38: 6380–6385.Google Scholar
  13. Charnock, S.J., Henrissat, B. and Davies, G. 2001. Three-dimensional structures of UDP-sugar glycosyltransferases illuminate the biosynthesis of plant polysaccharides. Plant Physiol. 125: 527–531.Google Scholar
  14. Cicek, M., Blanchard, D., Bevan, D.R. and Esen, A. 2000. The aglycone specificity-determining sites are different in 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA)-glucosidase (maize β-glucosidase) and dhurrinase (sorghum β-glucosidase). J. Biol. Chem. 275: 20002–20011.Google Scholar
  15. Coughlan, M.P. and Hazlewood, G.P. 1993. β-1,4-D-xylan-degrading enzyme systems: biochemistry, molecular biology and applications. Biotechnol. Appl. Biochem. 17: 259–289.Google Scholar
  16. Coutinho, P. and Henrissat, B. 1999a. Carbohydrateactive enzymes: an integrated database approach. In: H. Gilbert, G. Davies, B. Henrissat and B. Svensson (Eds.) Recent Advances in Carbohydrate Bioengineering, Royal Society of Chemistry, Cambridge, UK, pp. 3–12.Google Scholar
  17. Coutinho, P.M. and Henrissat, B. 1999b. Life with no sugars? J. Mol. Microbiol. Biotechnol. 1: 307–308.Google Scholar
  18. Cui, X., Shin, H., Charlotte Song, C., Laosinchai1, W., Amano, Y. and Brown, R.M. Jr. 2001. A putative plant homolog of the yeast β-1,3-glucan synthase subunit FKS1 from cotton (Gossypium hirsutum L.) fibers. Planta, in press.Google Scholar
  19. Davies, G. and Henrissat, B. 1995. Structures and mechanisms of glycosyl hydrolases. Structure 3: 853–859.Google Scholar
  20. Davies, G.J. 1998. Structural studies on cellulases. Biochem. Soc. Transact. 26: 167–173.Google Scholar
  21. Dejardin, A., Sokolov, L.N. and Kleczkowski, L.A. 1999. Sugar/osmoticum levels modulate differential abscisic acid-independent expression of two stress-responsive sucrose synthase genes in Arabidopsis. Biochem. J. 344: 503–509.Google Scholar
  22. Dijkwel, P.P., Huijser, C., Weisbeek, P.J., Chua, N.H. and Smeekens, S.C. 1997. Sucrose control of phytochrome A signaling in Arabidopsis. Plant Cell 9: 583–595.Google Scholar
  23. Doblin, M.S., De Melis, L., Newbigin, E., Bacic, A. and Read, S.M. 2001. Pollen tubes of Nicotiana alata express two genes from different β-glucan synthase families. Plant Physiol., in press.Google Scholar
  24. Dolan, L., Linstead, P. and Roberts, K. 1997. Developmental regulation of pectic polysaccharides in the root meristem of Arabidopsis. J. Exp. Bot. 48: 713–720.Google Scholar
  25. Dörmann, P., Balbo, I. and Benning, C. 1999. Arabidopsis galactolipid biosynthesis and lipid trafficking mediated by DGD1. Science 284: 2181–2184.Google Scholar
  26. Garcia-Vallvé, S., Romeu, A. and Palau, J. 2000. Horizontal gene transfer of glycosyl hydrolases of the rumen fungi. Mol. Biol. Evol. 17: 352–361.Google Scholar
  27. Gastinel, L.N., Cambillau, C. and Bourne, Y. 1999. Crystal structures of the bovine β4galactosyltransferase catalytic domain and its complex with uridine diphosphogalactose. EMBO J. 18: 3546–3557.Google Scholar
  28. Gebler, J., Gilkes, N.R., Claeyssens, M., Wilson, D.B., Béguin, P., Wakarchuk, W.W., Kilburn, D.G., Miller, R.C. Jr., Warren, R.A. and Withers, S.G. 1992. Stereoselective hydrolysis catalyzed by related β-1,4-glucanases and β-1,4-xylanases. J. Biol. Chem. 26: 12559–12561.Google Scholar
  29. Ha, S., Walker, D., Shi, Y. and Walker, S. 2000. The 1.9 Å crystal structure of Escherichia coli MurG, a membrane-associated gly-cosyltransferase involved in peptidoglycan biosynthesis. Protein Sci. 9: 1045–1052.Google Scholar
  30. Henrissat, B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280: 309–316.Google Scholar
  31. Henrissat, B. and Bairoch, A. 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293: 781–788.Google Scholar
  32. Henrissat, B. and Bairoch, A. 1996. Updating the sequence-based classification of glycosyl hydrolases. Biochem. J. 316: 695–696.Google Scholar
  33. Henrissat, B. and Davies, G. 1997. Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 7: 637–644.Google Scholar
  34. Henrissat, B. and Davies, G. 2000. Glycoside hydrolases and glycosyltransferases: families, modules and implications for genomics. Plant Physiol. 124: 1515–1520.Google Scholar
  35. Hong, Z., Delauney, A.J. and Verma, D.P.S. 2001. A cell platespecific callose synthase and its interaction with phragmoplastin. Plant Cell, in press.Google Scholar
  36. Hrmova, H. and Fincher, G.B. 2001. Three-dimensional structures, substrate specificities and biological functions of β-D-glucan endo-and exohydrolases from higher plants. Plant Mol. Biol., this issue.Google Scholar
  37. Jin, W., Horner, H.T., Palmer, R.G. and Shoemaker, R.C. 1999. Analysis and mapping of gene families encoding β-1,3-glucanases of soybean. Genetics 153: 445–452.Google Scholar
  38. Kaiser, J. 2000. From genome to functional genomics. Science 288: 1715.Google Scholar
  39. Kottom, T.J. and Limper, A.H. 2000. Cell wall assembly by Pneu-mocystis carinii: evidence for a unique Gsc-1 subunit mediating β-1,3-glucan deposition. J. Biol. Chem. 275: 40628–40634.Google Scholar
  40. Kraulis, P.J. 1991. Molscript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24: 946–950.Google Scholar
  41. Lerouge, P., Cabanes-Macheteau, M., Rayon, C., Fischette-Laine, A.C., Gomord, V. and Faye, L. 1998. N-glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol. Biol. 38: 31–48Google Scholar
  42. Little, E., Bork, P. and Doolittle, R.F. 1994. Tracing the spread of fibronectin type III domains in bacterial glycohydrolases. J. Mol. Evol. 39: 631–643.Google Scholar
  43. McCarter, J.D. and Withers, S.G. 1994. Mechanisms of enzymatic glycoside hydrolysis. Curr. Opin. Struct. Biol. 4: 885–892.Google Scholar
  44. Minton, J.P., Walaszek, Z., Schooley, W., Hanausek-Walaszek M., and Webb, T.E. 1986. β-Glucuronidase levels in patients with fibrocystic breast disease. Breast Cancer Res. Treatm. 8: 217–222.Google Scholar
  45. Mita, S., Murano, N., Akaike, M. and Nakamura, K. 1997. Mutants of Arabidopsis thaliana with pleiotropic effects on the expression of the gene for β-amylase and on the accumulation of anthocyanin that are inducible by sugars. Plant J. 11: 841–851.Google Scholar
  46. Myers, A.M., Morell, M.K., James, M.G. and Ball, S.G. 2000. Recent progress toward understanding biosynthesis of the amylopectin crystal. Plant Physiol. 122: 989–997.Google Scholar
  47. Nicol, F., His, I., Jauneau, A., Vernhettes, S., Canut, H. and Hofte, H. 1998. A plasma membrane-bound putative endo-1,4-β-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J. 17: 5563–5576.Google Scholar
  48. Ochman, H., Lawrence, J.G. and Groisman, E.A. 2000. Lateral gene transfer and the nature of bacterial innovation. Nature 405: 299–304.Google Scholar
  49. Pedersen, L.C., Tsuchida, K., Kitagawa, H., Sugahara, K., Darden, T.A. and Negishi, M. 2000. Heparan/chondroitin sulfate biosynthesis: structure and mechanism of human glucuronyltransferase I. J. Biol. Chem. 275: 34580–34585.Google Scholar
  50. Perrin, R.M., DeRocher, A.E., Bar-Peled, M., Zeng, W., Noram-buena, L., Orellana, A., Raikhel, N.V. and Keegstra, K. 1999. Xyloglucan fucosyltransferase, an enzyme involved in plant cell wall biosynthesis. Science 284: 1976–1979.Google Scholar
  51. Perrin, R., Wilkerson, C. and Keegstra, K. 2001. Golgi enzymes that synthesize plant cell wall polysaccharides: finding and evaluating candidates in the genomic era. Plant Mol. Biol., this issue.Google Scholar
  52. Rask, L., Andreasson, E., Ekbom, B., Eriksson, S., Pontoppidan, B. and Meijer, J. 2000. Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol. Biol. 42: 93–113.Google Scholar
  53. Reymond, P. and Farmer, E.E. 1998. Jasmonate and salicylate as global signals for defense gene expression. Curr. Opin. Plant Biol. 1: 404–411.Google Scholar
  54. Richmond, T.A. and Somerville, C.R. 2001. Integrative approaches to determining Csl function. Plant Mol. Biol., this issue.Google Scholar
  55. Sears, P. and Wong, C.H. 1998. Enzyme action in glycoprotein synthesis. Cell. Mol. Life Sci. 54: 223–252.Google Scholar
  56. Shimojima, M., Ohta, H., Iwamatsu, A., Masuda, T., Shioi, Y. and Takamiya, K. 1997. Cloning of the gene for monogalactosyldiacylglycerol synthase and its evolutionary origin. Proc. Natl. Acad. Sci. USA 94: 333–337.Google Scholar
  57. Sinnott, M.L. 1990. Catalytic mechanisms of enzymic glycosyl transfer. Chem. Rev. 90: 1171–1202.Google Scholar
  58. Smant, G., Stokkermans, J.P., Yan, Y., de Boer, J.M., Baum, T.J., Wang, X., Hussey, R.S., Gommers, F.J., Henrissat, B., Davis, E.L., Helder, J., Schots, A. and Bakker, J. 1998. Endogenous cellulases in animals: isolation of β-1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proc. Natl. Acad. Sci. USA 95: 4906–4911.Google Scholar
  59. Spiro, M.D., Ridley, B.L., Eberhard, S., Kates, K.A., Mathieu, Y., O'Neill, M.A., Mohnen, D., Guern, J., Darvill, A. and Alber-sheim, P. 1998. Biological activity of reducing-end-derivatized oligogalacturonides in tobacco tissue cultures. Plant Physiol. 116: 1289–1298.Google Scholar
  60. Strasser, R., Mucha, J., Mach, L., Altmann, F., Wilson, I.B., Glossl, J. and Steinkellner, H. 2000. Molecular cloning and functional expression of â-1,2-xylosyltransferase cDNA from Arabidopsis thaliana. FEBS Lett. 472: 105–108.Google Scholar
  61. Strasser, R., Mucha, J., Schwihla, H., Altmann, F., Glossl, J. and Steinkellner, H. 1999. Molecular cloning and characteriza-tion of cDNA coding for β-1,2-N-acetylglucosaminyltransferase I (GlcNAc-TI) from Nicotiana tabacum. Glycobiology 9: 779–785.Google Scholar
  62. Sturm, A. and Tang, G.Q. 1999. The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci. 4: 401–407.Google Scholar
  63. Tukey, R. and Strassburg, C. 2000. Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu. Rev. Pharmacol. Toxicol. 40: 581–616.Google Scholar
  64. Ñnligil, U., Zhou, S., Yuwaraj, S., Sarkar, M., Schachter, H. and Rini, J. 2000. X-ray crystal structure of rabbit N-acetylglucosaminyltransferase I: catalytic mechanism and a new protein superfamily. EMBO J. 19: 5269–5280.Google Scholar
  65. Vrielink, A., Ruger, W., Driessen, H.P. and Freemont, P.S. 1994. Crystal structure of the DNA modifying enzyme β-glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose. EMBO J. 13: 3413–3422.Google Scholar
  66. Wingler, A., Fritzius, T., Wiemken, A., Boller, T. and Aeschbacher, R.A. 2000. Trehalose induces the ADP-glucose pyrophospho-rylase gene, ApL3, and starch synthesis in Arabidopsis.Plant Physiol. 124: 105–114.Google Scholar
  67. Zechel, D.L. and Withers, S.G. 2000. Glycosidase mechanisms: anatomy of a finely tuned catalyst. Acc. Chem. Res. 33: 11–18.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Bernard Henrissat
    • 1
  • Pedro M. Coutinho
    • 2
  • Gideon J. Davies
    • 3
  1. 1.Architecture et Fonction des Macromolécules BiologiquesCNRS and Universités d'Aix-Marseille I and IIMarseille cedex 20France
  2. 2.Centre for Biological and Chemical EngineeringInstituto Superior TécnicoLisboaPortugal
  3. 3.Structural Biology Laboratory, Department of ChemistryUniversity of YorkHeslington, YorkUK

Personalised recommendations