Plant Molecular Biology

, Volume 47, Issue 1–2, pp 9–27 | Cite as

Pectin: cell biology and prospects for functional analysis

  • William G.T. Willats
  • Lesley McCartney
  • William Mackie
  • J. Paul Knox


Pectin is a major component of primary cell walls of all land plants and encompasses a range of galacturonic acid-rich polysaccharides. Three major pectic polysaccharides (homogalacturonan, rhamnogalacturonan-I and rhamnogalacturonan-II) are thought to occur in all primary cell walls. This review surveys what is known about the structure and function of these pectin domains. The high degree of structural complexity and heterogeneity of the pectic matrix is produced both during biosynthesis in the endomembrane system and as a result of the action of an array of wall-based pectin-modifying enzymes. Recent developments in analytical techniques and in the generation of anti-pectin probes have begun to place the structural complexity of pectin in cell biological and developmental contexts. The in muro de-methyl-esterification of homogalacturonan by pectin methyl esterases is emerging as a key process for the local modulation of matrix properties. Rhamnogalacturonan-I comprises a highly diverse population of spatially and developmentally regulated polymers, whereas rhamnogalacturonan-II appears to be a highly conserved and stable pectic domain. Current knowledge of biosynthetic enzymes, plant and microbial pectinases and the interactions of pectin with other cell wall components and the impact of molecular genetic approaches are reviewed in terms of the functional analysis of pectic polysaccharides in plant growth and development.

cell wall homogalacturonan pectin pectinases polysaccharide rhamnogalacturonan 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alagna, L., Prosperi, T., Tomlinson A.A.G. and Rizzo, R. 1986. Extended X-ray absoprtion fine structure investigation of solid and gel forms of calcium poly(α-D-galacturonate). J. Phys. Chem. 90: 6853–6857.Google Scholar
  2. Albersheim, P., Darvill, A.G., O'Neill, M.A., Schols, H.A. and Vor-agen, A.G.J. 1996. An hypothesis: the same six polysaccharides are components of the primary cell walls of all higher plants. In: J. Visser and A.G.J. Voragen (Eds) Pectins and Pectinases, Elsevier Science, Amsterdam, pp. 47–55.Google Scholar
  3. An, J., O'Neill, M.A., Albersheim, P. and Darvill, A.G. 1994. Isola-tion and structural characterization of β-D-glucosyluronic acid and 4-O-methyl β-D-glucosyluronic acid-containing oligosac-charides from the cell wall pectic polysaccharide, rhamnogalac-turonan I. Carbohydrate Res. 252: 235–243.Google Scholar
  4. Atkins, E.D.T., Nieduszynski, I.A., Mackie, W., Parker, K.D. and Smolko E.E. 1973. Structural components of alginic acid. II. The crystalline structure of poly-α-L-guluronic acid. Results of X-ray diffraction and polarized infrared studies.Biopolymers 12: 1879–1887.Google Scholar
  5. Barras, F., Van Gijsegem, F. and Chatterjee, A.K. 1994. Extracel-lular enzymes and pathogenesis of soft-rot Erwinia. Annu. Rev. Phytopath. 32: 201–234.Google Scholar
  6. Bergey, D.R., Orozco-Cardenas, M., de Moura, D.S. and Ryan, C.A. 1999. A wound-and systemin-inducible polygalacturonase in tomato leaves. Proc. Natl. Acad. Sci. USA 96: 1756–1760.Google Scholar
  7. Bonilla, I., Mergold-Villasenor, C., Campos, M.E., Sanchez, N., Pérez, H., Lopez, L., et al. 1997. The aberrant cell walls of boron-deficient bean root nodules have no covalently bound hydroxyproline/proline-rich proteins. Plant Physiol. 115: 1329–1340.Google Scholar
  8. Bonnin E., Vigouroux J. and Thibault, J.F. 1997. Kinetic para-meters of hydrolysis and transglycosylation catalyzed by an exo-β-(1,4)-galactanase. Enzyme Microbial Tech. 20: 516–522.Google Scholar
  9. Bordenave, M., Goldberg, R., Huet, J.C. and Pernollet, J.C. 1995. A novel protein from mung bean hypocotyl cell walls with acetyl esterase activity. Phytochemistry 38: 315–319.Google Scholar
  10. Boudart, G., Lafitte, C., Barthe, J.P., Frassez, D. and Esquerré-Tugayé, M.-T. 1998. Differential elicitation of defense responses by pectic fragments in bean seedlings. Planta 206: 86–94.Google Scholar
  11. Brisson, J.R., Uhrinova, S., Woods, R.J., van der Zwan, M., Jarrell, H.C., Paoletti, L.C., Kasper, D.L. and Jennings, H.J. 1997. NMR and molecular dynamics studies of the conformational epitope of the type III group B Streptococcus capsular polysaccharide and derivatives. Biochemistry 36: 3278–3292Google Scholar
  12. Buckeridge, M.S. and Reid, J.S.G. 1994. Purification and properties of a novel β-galactosidase or exo-(1→4)-β-D-galactanase from the cotyledons of germinated Lupinus angustifolius L. seeds. Planta 192: 502–511.Google Scholar
  13. Burton, R.A., Gibeaut, D.M., Bacic, A., Findlay, K., Roberts, K., Hamilton, A., Baulcombe, D.C. and Fincher, G.B. 2000. Virus-induced silencing of a plant cellulose synthase gene. Plant Cell 12: 691–705.Google Scholar
  14. Bush, M.S. and McCann, M.C. 1999. Pectic epitopes are differen-tially distributed in the cell walls of potato (Solanum tuberosum) tubers. Physiol. Plant. 107: 201–213.Google Scholar
  15. Camardella, L., Carratore, V., Ciardiello, M.A., Servillo, L., Balestrieri, C. and Giovane, A. 2000. Kiwi protein inhibitor of pectin methylesterase. Amino-acid sequence and structural importance of two disulfide bridges. Eur. J. Biochem. 267: 4561–4565.Google Scholar
  16. Carey, A.T., Holt, K., Picard, S., Wilde, R., Tucker, G.A., Bird, C.R., Schuch, W. and Seymour, G.B. 1995. Tomato exo-(1→4)-. β-D-galactanase: isolation, changes during ripening in normal and mutant tomato fruit, and characterization of a related cDNA clone. Plant Physiol. 108: 1099–1107.Google Scholar
  17. Carpita, N.C. 1996. Structure and biogenesis of the cell walls of grasses. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 445–476.Google Scholar
  18. Carpita, N.C. and Gibeaut, D.M. 1993. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3: 1–30.Google Scholar
  19. Carrington, C.M.S., Greve, L.C. and Labavitch, J.M. 1993. Cell-wall metabolism in ripening fruit. 6. Effect of the antisense poly-galacturonase gene on cell-wall changes accompanying ripening in transgenic tomatoes. Plant Physiol. 103: 429–434.Google Scholar
  20. Casero, P.J. and Knox, J.P. 1995. The monoclonal antibody JIM5 indicates patterns of pectin deposition in relation to pit fields at the plasma-membrane-face of tomato pericarp cell walls. Protoplasma 188: 133–137.Google Scholar
  21. Catoire, L., Pierron, M., Morvan, C., Hervé du Penhoat, C. and Goldberg, R. 1998. Investigation of the action patterns of pect-inmethylesterase isoforms through kinetic analyses and NMR spectroscopy. Implications in cell wall expansion. J. Biol. Chem. 273273: 33150–33156.Google Scholar
  22. Chanliaud, E. and Gidley, M.J. 1999. In vitro synthesis and properties of pectin/Acetobacter xylinus cellulose composites. Plant J. 20: 25–35.Google Scholar
  23. Charnay, D., Nari, J. and Noat, G. 1992. Regulation of plant cell wall pectin methyl esterase by polyamines: interaction with the effect of metal ions. Eur. J. Biochem. 205: 711–714.Google Scholar
  24. Chen, M.H., Sheng, J.S., Hind, G., Handa, A.K. and Citovsky, V. 2000. Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. EMBO J. 19: 913–920.Google Scholar
  25. Christensen, T.M.I.E., Nielsen, J.E. and Mikkelsen, J.D. 1996. Iso-lation, characterization and immunolocalization of orange fruit acetyl esterase. In: J. Visser and A.G.J. Voragen (Eds.) Pectins and Pectinases, Elsevier Science, Amsterdam, pp. 723–730.Google Scholar
  26. Collmer, A. and Keen, N.T. 1986. The role of pectic enzymes in plant pathogenesis. Annu. Rev. Phytopath. 24: 383–409.Google Scholar
  27. Cook, B.J., Clay, R.P., Bergmann, C.W., Albersheim, P. and Darvill, A.G. 1999. Fungal polygalacturonases exhibit different substrate degradation patterns and differ in their susceptibilities to poly-galacturonase inhibiting proteins. Mol. Plant-Microbe Interact. 12: 703–711.Google Scholar
  28. Cosgrove, D.J. 1999. Enzymes and other agents that enhance cell wall extensibility. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 391–417.Google Scholar
  29. Cosgrove, D.J. 2000. Expansive growth of plant cell walls. Plant Physiol. Biochem. 38: 109–124.Google Scholar
  30. Daas, P.J.H., Voragen, A.G.J. and Schols, H.A. 2000. Characterization of non-esterified galacturonic acid sequences in pectin with endopolygalacturonase. Carbohydrate Res. 326: 120–129.Google Scholar
  31. Denès, J.-M., Baron, A., Renard, C.M.G.C., Péan, C. and Dril-leau, J.-F. 2000. Different action patterns for apple pectin methylesterase at pH 7.0 and 4.5. Carbohydrate Res. 327: 385–393.Google Scholar
  32. Domingo, C., Roberts, K., Stacey, N.J., Connerton, I., Ruiz-Teran, F. and McCann, M.C. 1998. A pectate lyase from Zinnia elegans is auxin inducible. Plant J. 13: 17–28.Google Scholar
  33. Doong, R.L. and Mohnen, D. 1998. Solubilization and characteri-zation of a galacturonosyltransferase that synthesizes the pectic polysaccharide homogalacturonan. Plant J. 13: 363–374.Google Scholar
  34. Dorokhov, Y.L., Mäkinen, K., Frolova, O.Y., Merits, A., Saarinen, J., Kalkkinen, N., et al. 1999. A novel function for a unbiquitous plant enzyme pectin methylesterase: the host cell receptor for the tobacco mosaic virus movement protein. FEBS Lett. 461: 223–228.Google Scholar
  35. Dumville, J.C. and Fry, S.C. 2000. Uronic acid-containing oligosac-charins: their biosynthesis, degradation and signalling roles in non-diseased plant tissues. Plant Physiol. Biochem. 38: 125–140.Google Scholar
  36. du Penhoat, C.H., Gey, C., Pellerin, P. and Pérez, S. 1999. An NMR solution study of the mega-oligosaccharide, rhamnogalacturonan II. J. Biomol. NMR 14: 253–271.Google Scholar
  37. Engelsen, S.B., Cros, S., Mackie, W. and Pérez, S. 1996. A molecular builder for carbohydrates: applications to polysaccharides and complex carbohydrates. Biopolymers 39: 417–433.Google Scholar
  38. Ermel, F.F., Follet-Gueye, M.L., Cibert, C., Vian, B., Morvan, C., Catesson, A.N. and Goldberg, R. 2000. Differential localization of arabinan and galactan side chains of rhamnogalacturonan 1 in cambial derivatives. Planta 210: 732–740.Google Scholar
  39. Esquerré-Tugayé, M.-T., Boudart, G. and Dumas, B. 2000. Cell wall degrading enzymes, inhibitory proteins, and oligosaccha-rides participate in the molecular dialogue between plants and pathogens. Plant Physiol. Biochem. 38: 157–163.Google Scholar
  40. Fagard, M., Höfte, H. and Vernhettes, S. 2000. Cell wall mutants. Plant Physiol. Biochem. 38: 15–25.Google Scholar
  41. Fischer, R.L. and Bennett, A.B. 1991. Role of cell wall hydrolases in fruit ripening.Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 675–703.Google Scholar
  42. Fleischer, A., O'Neill, M.A. and Ehwald, R. 1999. The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol. 121: 829–838.Google Scholar
  43. Fleischer, A., Titel, C. and Ehwald, R. 1998. The boron requirement and cell wall properties of growing and stationary suspension-cultured Chenopodium album L. cells. Plant Physiol. 117: 1401–1410.Google Scholar
  44. Foster, T.J., Ablett, S., McCann, M.C. and Gidley, M.J. 1996. Mobility resolved C-13 NMR spectroscopy of primary plant cell walls. Biopolymers 39: 51–66.Google Scholar
  45. Freshour, G., Clay, R.P., Fuller, M.S., Albersheim, P., Darvill, A.G. and Hahn, M.G. 1996. Developmental and tissue-specific struc-tural alterations of the cell wall polysaccharides of Arabidopsis thaliana roots. Plant Physiol. 110: 1413–1429.Google Scholar
  46. Geshi, N., Jorgensen, B., Scheller, H.V. and Ulvskov, P. 2000. In vitro biosynthesis of 1,4,-β-galactan attached to rhamnogalacturonan I. Planta 210: 622–629.Google Scholar
  47. Gibeaut, D.M. 2000. Nucleotide sugars and glycosyltransferases for synthesis of cell wall matrix polysaccharides. Plant Physiol. Biochem. 38: 69–80.Google Scholar
  48. Gillet, C., Voué, M. and Cambier, P. 1998. Site-specific counter-ion binding and pectic chains conformational transitions in the Nitella cell wall. J. Exp. Bot. 49: 797–805.Google Scholar
  49. Goubet, F. and Mohnen, D. 1999. Solubilization and partial charac-terization of homogalacturonan-methyltransferase from micro-somal membranes of suspension-cultured tobacco cells. Plant Physiol. 121: 281–290.Google Scholar
  50. Guillon, F. and Thibault, J.-F. 1989. Methylation analysis and mild acid hydrolysis of the ‘hairy’ fragments of sugar beet pectins. Carbohydrate Res. 190: 85–96.Google Scholar
  51. Hadfield, K.A. and Bennett, A.B. 1998. Polygalacturonases: many genes in search of a function. Plant Physiol. 117: 337–343.Google Scholar
  52. Hart, D.A. and Kindel, P.K. 1970. Isolation and partial characterization of apiogalacturonans from the cell wall of Lemna minor. Biochem. J. 116: 569–579.Google Scholar
  53. Herron, S.R., Benen, J.A.E., Scavetta, R.D., Visser, J. and Jurnak, F. 2000. Structure and function of pectic enzymes: virulence factors of plant pathogens. Proc. Natl. Acad. Sci. USA 97: 8762–8769Google Scholar
  54. Ishii, T. 1997. O-Acetylated oligosaccharides from pectins of potato tuber cell walls. Plant Physiol. 113: 1265–1272Google Scholar
  55. Ishii, T., Matsunaga, T., Pellerin, P., O'Neill, M.A., Darvill, A. and Albersheim, P. 1999. The plant cell wall polysaccharide rhamno-galacturonan II self-assembles into a covalently cross-linked dimer. J. Biol. Chem. 274: 13098–13104.Google Scholar
  56. Ishikawa, M., Kuroyama, Y., Takeuchi, Y. and Tsumuraya, Y. 2000. Characterization of pectin methyltransferase from soybean hypocotyls. Planta 210: 782–791.Google Scholar
  57. Jarvis, M.C. 1984. Structure and properties of pectin gels in plant cell walls. Plant Cell Envir. 7: 153–164.Google Scholar
  58. Jarvis, M.C. 1992. Control of thickness of collenchyma cell walls by pectins. Planta187: 218–220.Google Scholar
  59. Jarvis, M.C. and Apperley, D. 1995. Chain conformation in concen-trated pectin gels: evidence from 13 C NMR. Carbohydrate Res. 275: 131–145.Google Scholar
  60. Jarvis, M.C., Forsyth, W. and Duncan, H.J. 1988. A survey of the pectic content of nonlignified monocot cell walls. Plant Physiol. 88: 309–314.Google Scholar
  61. Jauneau, A., Roy, S., Reis, D. and Vian, B. 1998. Probes and microscopical methods for the localization of pectins in plant cells. Int. J. Plant Sci. 159: 1–13.Google Scholar
  62. Jones, L., Seymour, G.B. and Knox, J.P. 1997. Localization of pec-tic galactan in tomato cell walls using a monoclonal antibody specific to (1→4)-β-D-galactan. Plant Physiol. 113: 1405–1412.Google Scholar
  63. Kester, H.C.M., Benen, J.A.E. and Visser, J. 1999. The exopolygalacturonase from Aspergillus tubingensis is also active on xylogalacturonan. Biotechnol. Appl. Biochem. 30: 53–57.Google Scholar
  64. Kester, H.C.M., Benen, J.A.E., Visser, J., Warren, M.E., Orlando, R., Bergmann, C., et al. 2000. Tandem mass spectrometric analysis of Aspergillus niger pectin methylesterase: mode of action on fully methyl-esterified oligogalacturonates. Biochem. J. 346: 469–474.Google Scholar
  65. Kikuchi, A., Edashige, Y., Ishii, T. and Satoh, S. 1996. A xylo-galacturonan whose level is dependent on the size of cell clusters is present in the pectin from cultured carrot cells. Planta 200: 369–372.Google Scholar
  66. Knox, J.P. 1992. Cell adhesion, cell separation and plant morpho-genesis. Plant J. 2: 137–141.Google Scholar
  67. Knox, J.P. 1997. The use of antibodies to study the architecture and developmental regulation of plant cell walls. Int. Rev. Cytol. 171: 79–120.Google Scholar
  68. Knox, J.P., Linstead, P.J., King, J., Cooper, C. and Roberts, K. 1990. Pectin esterification is spatially regulated both within cell walls and between developing tissues of root apices. Planta 181: 512–521.Google Scholar
  69. Kobayashi, M., Matoh, T. and Azuma, J. 1996. Two chains of rhamnogalacturonan II are cross-linked by borate-diol ester bonds in higher plant cell walls. Plant Physiol. 110: 1017–1020.Google Scholar
  70. Kobayashi, M., Nakagawa, H., Asaka, T. and Matoh, T. 1999. Borate-rhamnogalacturonan II bonding re-inforced by Ca2 +retains pectic polysaccharides in higher plant cell walls. Plant Physiol. 119: 199–203.Google Scholar
  71. Leckie, F., Mattei, B., Capodicasa, C., Hemmings, A., Nuss, L., Aracri, B., De Lorenzo, G. and Cervone, F. 1999. The specificity of polygalacturonase-inhibiting protein (PGIP): a single amino acid substitution in the solvent-exposed β-strand/β-turn region of the leucine-rich repeats (LRRs) confers a new recognition capability. EMBO J. 18: 2352–2363.Google Scholar
  72. Le Goff, A., Renard, C.M.G.C., Bonnin, E. and Thibault, J.-F. 2001. Extraction, purification and chemical characterization of xylogalacturonans from pea hulls. Carbohydrate Polymers 45: 325–334.Google Scholar
  73. Lerouge, P., O'Neill, M.A., Darvill, A.G. and Albersheim, P. 1993. Structural characterization of endo-glycanase-generated oligo-glycosyl sie chains of rhamnogalacturonan I. Carbohydrate Res. 243: 359–371.Google Scholar
  74. Liberman, M., Mutaftschiev, S., Jauneau, A., Vian, B., Catesson, A.M. and Goldberg, R. 1999. Mung bean hypocotyl homogalac-turonan: localization, organization and origin. Ann. Bot. 84: 225–233.Google Scholar
  75. Limberg, G., Körner, R., Bucholt, H.C., Christensen, T.M.I.E., Roepstorff, P. and Mikkelsen, J.D. 2000a. Analysis of different de-esterification mechanisms for pectin by enzymatic finger-printing using endopectin lyase and endopolygalacturonase II from A. niger. Carbohydrate Res. 327: 293–307.Google Scholar
  76. Limberg, G., Körner, R., Bucholt, H.C., Christensen, T.M.I.E., Roepstorff, P. and Mikkelsen, J.D. 2000b. Quantification of the amount of galacturonic acid residues in block sequences in pectin homogalacturonan by enzymatic fingerprinting with exo-and endo-polygalacturonase II from Aspergillus niger. Carbohydrate Res. 327: 321–332.Google Scholar
  77. Liners, F., Gaspar, T. and van Cutsem, P. 1994. Acetyl-and methyl-esterification of pectins of friable and compact sugar-beet calli: consequences for intercellular adhesion. Planta 192: 545–556.Google Scholar
  78. Liners, F., Thibault, J.-F. and Van Cutsem, P. 1992. Influence of the degree of polymerization of oligogalacturonates and of esterification pattern on pectin on their recognition by monoclonal antibodies. Plant Physiol. 99: 1099–1104.Google Scholar
  79. Longland, J.M., Fry, S.C. and Trewavas, A.J. 1989. Developmental control of apiogalacturonan biosynthesis and UDP-apiose production in a duckweed. Plant Physiol. 90: 972–976.Google Scholar
  80. McCabe, P.F., Valentine, T.A., Forsberg, L.S. and Pennell, R.I., 1997. Soluble signals from cells identified at the cell wall establish a developmental pathway in carrot. Plant Cell 9: 2225–2241.Google Scholar
  81. McCartney, L., Ormerod, A.P., Gidley, M.J. and Knox, J.P. 2000. Temporal and spatial regulation of pectic (1→4)-β-D-galactan in cell walls of developing pea cotyledons: implications for mechanical properties. Plant J. 22: 105–113.Google Scholar
  82. Marty, P., Jouan, B., Bertheau, Y., Vian, B. and Goldberg, R. 1997. Charge density in stem cell walls of Solanum tuberosum genotypes and susceptibility to blackleg. Phytochemistry 44: 1435–1441.Google Scholar
  83. Matoh, T., Takasaki, M., Takabe, K. and Kobayashi, M. 1998. Immunocytochemistry of rhamnogalacturonan II in cell walls of higher plants. Plant Cell Physiol. 39: 483–491.Google Scholar
  84. Messiaen, J. and Van Cutsem, P. 1999. Polyamines and pectins. II. Modulation of pectic-signal transduction. Planta 208: 247–256.Google Scholar
  85. Messiaen, J., Cambier, P. and Van Cutsem, P. 1997. Polyamines and pectins. I. Ion exchange and selectivity. Plant Physiol. 113: 387–395.Google Scholar
  86. Micheli, F., Holliger, C., Goldberg, R. and Richard, L. 1998. Characterization of the pectin methylesterase-like gene AtPME3:a new member of a gene family comprising at least 12 genes in Arabidopsis thaliana. Gene 220: 13–20.Google Scholar
  87. Moerschbacher, B.M., Mierau, M., Graessner, B., Noll, U. and Mort, A.J. 1999. Small oligomers of galacturonic acid are endogenous suppressors of disease resistance reactions in wheat leaves. J. Exp. Bot. 50: 605–612.Google Scholar
  88. Mohnen, D. 1999. Biosynthesis of pectins and galactomannans. In: D. Barton, K. Nakanishi and O. Meth-Cohn (Eds.) Comprehensive Natural Products Chemistry, vol. 3, Elsevier Science, Amsterdam, pp. 497–527.Google Scholar
  89. Mølgaard, A., Kauppinen, S. and Larsen, S. 2000. Rhamnogalacturonan acetylesterase elucidates the structure and function of a new family of hydrolases. Struct. Fold. Design 8: 373–383.Google Scholar
  90. Mollet, J.-C., Park, S.-Y., Nothnagel, E.A. and Lord, E.M. 2000. A lily stylar pectin is necessary for pollen tube adhesion to an in vitro stylar matrix. Plant Cell 12: 1737–1749.Google Scholar
  91. Morris, E.R., Powell, D.A., Gidley, M.J. and Rees, D.A. 1982. Conformation and interactions of pectins I. Polymorphism between gel and solid states of calcium polygalacturonate. J. Mol. Biol. 155: 507–516.Google Scholar
  92. Mutter, M., Beldman, G., Pitson, S.M., Schols, H.A. and Voragen, A.G.J. 1998a. Rhamnogalacturonan α-D-galactopyranosyluronohydrolase: an enzyme that specifically removes the terminal nonreducing galacturonosyl residue in rhamnogalacturonan regions of pectin. Plant Physiol. 117: 153–163.Google Scholar
  93. Mutter, M., Colquhoun, I.J., Beldman, G., Schols, H,A., Bakx, E.J. and Voragen, A.G.J. 1998b. Characterization of recombinant rhamnogalacturonan α-L-rhamnopyranosyl-(1,4)-α-D-galactopyranosyluronide lyase from Aspergillus aculeatus:an enzyme that fragments rhamnogalacturonan I regions of pectin. Plant Physiol. 117: 141–152.Google Scholar
  94. Mutter, M., Renard, C.M.G.C., Beldman, G., Schols, H.A. and Voragen, A.G.J. 1998c. Mode of action of RG-hydrolase and RG-lyase toward rhamnogalacturonan oligomers. Characterization of degradation products using RG-rhamnohydrolase and RG-galacturonohydrolase. Carbohydrate Res. 311: 155–164.Google Scholar
  95. Nothnagel, E. 1997. Proteoglycans and related components in plant cells. Int. Rev. Cytol. 174: 195–291.Google Scholar
  96. O'Neill, M.A., Albersheim, P. and Darvill, A. 1990. The pectic polysaccharides of primary cell walls. In: P.M. Dey (Ed.) Methods in Plant Biochemistry, vol. 2, Academic Press, London, pp. 415–441.Google Scholar
  97. O'Neill, M.A., Warrenfeltz, D., Kates, K., Pellerin, P., Doci, T., Darvill, A.G. and Albersheim, P. 1996. Rhamnogalacturonan-II, a pectic polysaccharide in the walls of growing plant cell, forms a dimer that is covalently-linked by a borate ester. J. Biol. Chem. 271: 22923–22930.Google Scholar
  98. Orfila, C. and Knox, J.P. 2000. Spatial regulation of pectic polysac-charides in relation to pit fields in cell walls of tomato fruit pericarp. Plant Physiol. 122: 775–781.Google Scholar
  99. Orfila, C., Seymour, G.B., Willats, W.G.T., Huxham, I.M., Jarvis, M.C., Dover, C.J., Thompson, A.J. and Knox, J.P. 2001. Altered middle lamella homogalacturonan and disrupted deposition of (1→5)-α-L-arabinan in the pericarp of Cnr, a ripening mutant of tomato. Plant Physiol. 126: 210–221.Google Scholar
  100. Pauly, M. and Scheller, H.V. 2000. O-Acetylation of plant cell wall polysaccharides: identification and partial characterization of a rhamnogalacturonan O-acetyl-transferase from potato suspension-cultured cells. Planta 210: 659–667.Google Scholar
  101. Petersen, T.N., Kauppinen, S. and Larsen, S. 1997. The crystal structure of rhamnogalacturonase A from Aspergillus aculeatus: a right-handed parallel β helix. Structure 5: 533–544.Google Scholar
  102. Pérez, S., Mazeau, K. and du Penhoat, C.H. 2000. The three-dimensional structures of the pectic polysaccharides. Plant Physiol. Biochem. 38: 37–55.Google Scholar
  103. Pilling, J., Willmitzer, L. and Fisahn, J. 2000. Expression of a Petunia inflata pectin methyl esterase in Solanum tuberosum L. enhances stem elongation and modifies cation distribution. Planta 210: 391–399.Google Scholar
  104. Pitson, S.M., Voragen, A.G.J., Vincken, J.P. and Beldman, G. 1997. Action patterns and mapping of the substrate-binding regions of endo-(1→5)-α-L-arabinanases from Aspergillus niger and Aspergillus aculeatus. Carbohydrate Res. 303: 207–218.Google Scholar
  105. Potgieter, M.J. and van Wyk, A.E. 1992. Intercellular pectic pro-tuberances in plants: their structure and taxonomic significance. Bot. Bull. Acad. Sin. 33: 295–316.Google Scholar
  106. Powell, D.A., Morris, E.R., Gidley, M.J. and Rees, D.A. 1982. Conformation and interactions of pectins II. Influence of residue sequence on chain association in calcium pectate gels. J. Mol. Biol. 155: 517–531.Google Scholar
  107. Prade, R.A., Zhan, D.F., Ayoubi, P. and Mort, A.J. 1999. Pectins, pectinases and plant-microbe interactions. Biotech. Genet. Eng. Rev. 16: 361–391.Google Scholar
  108. Pulmann, J., Bucheli, E., Swain, M.J., Dunning, N., Albersheim, P., Darvill. A.G. and Hahn, M.G. 1994. Generation of monoclonal antibodies against plant cell wall polysaccharides. I. Characterization of a monoclonal antibody to a terminal α-(1→2)-linked fucosyl-containing epitope. Plant Physiol. 104: 699–710.Google Scholar
  109. Qi, X.Y., Behrens, B.X., West, P.R. and Mort, A.J. 1995. Solubilization and partial characterization of extensin fragments from cell-walls of cotton suspension cultures: evidence for a covalent cross-link between extensin and pectin. Plant Physiol. 108: 1691–1701.Google Scholar
  110. Redgwell, R.J. and Selvendran, R.R. 1986. Structural features of the cell wall polysaccharides of onion Allium cepa. Carbohydrate Res. 157: 183–199.Google Scholar
  111. Renard, C.M.G.C., Crépeau, M.-J. and Thibault, J.-F. 1999. Glucuronic acid is directly linked to galacturonic acid in the rhamnogalacturonan backbone of beet pectins. Eur. J. Biochem. 266: 566–574.Google Scholar
  112. Renard, C.C. and Jarvis, M.C. 1999a. Acetylation and methylation of homogalacturonans 1. Optimisation of the reaction and characterization of the products. Carbohydrate Polymers 39: 201–207.Google Scholar
  113. Renard, C.M.G.C. and Jarvis, M.C. 1999b. A cross-polarization, magic-angle-spinning, 13C-NMR study of polysaccharides in sugar beet cell walls. Plant Physiol 119: 1315–1322.Google Scholar
  114. Renard, C.M.G.C., Voragen, A.G.J., Thibault, J.-F. and Pilnik, W. 1991. Studies on apple protopectin V: structural studies on enzymatically extracted pectins. Carbohydr Polym 16: 137–154.Google Scholar
  115. Renard, C.M.G.C., Weightman, R.M. and Thibault, J.F. 1997. The xylose-rich pectins from pea hulls. Int. J. Biol. Macromol. 21: 155–162.Google Scholar
  116. Rhee, S. and Somerville, C. 1998. Tetrad pollen formation in quartet mutants of Arabidopsis thaliana is associated with persistence of pectic polysaccharides of the pollen mother cell wall. Plant J. 15: 79–88.Google Scholar
  117. Roberts, J.A., Whitelaw, C.A., Gonzalez-Carranza, Z.H. and Mc-Manus, M.T. 2000. Cell separation processes in plants: models, mechanisms and manipulation. Ann. Bot. 86: 223–235.Google Scholar
  118. Rogers, L.M., Kim, Y.-K., Guo, W., González-Candelas, L., Li, D. and Kolattukudy, P.E. 2000. Requirement for either a host-or pectin-induced pectate lyase for infection of Pisum sativum by Nectria hematococca. Proc. Natl. Acad. Sci. USA 97: 9813–9818.Google Scholar
  119. Rojo, E., León, J. and Sánchez-Serrano, J.J.1999. Cross-talk between wound signalling pathways determines local versus systemic gene expression in Arabidopsis thaliana. Plant J. 20: 135–142.Google Scholar
  120. Rombouts, F.M. and Thibault, J.F. 1986. Enzymatic and chemical degradation of the fine structure of pectins from sugar beet pulp. Carbohydrate Res. 256: 83–95.Google Scholar
  121. Ros, J.M., Schols, H.A. and Voragen, A.G.J. 1996. Extraction, characterization, and enzymatic degradation of lemon peel pectins. Carbohydrate Res. 282: 271–284.Google Scholar
  122. Rutherford, R. and Masson, P. 1996. Arabidopsis thaliana sku mutant seedlings show exaggerated surface dependent alteration in root growth vector. Plant Physiol. 111: 987–998.Google Scholar
  123. Ryttersgaard, C., Poulsen, J.C.N., Christgau, S., Sandal, T., Dalboge, H. and Larsen, S. 1999. Crystallization and preliminary X-ray studies of β-l,4-galactanase from Aspergillus aculeatus. Acta Crystallogr. D55: 929–930.Google Scholar
  124. Scavetta, R.D., Herron, S.R., Hotchkiss, A.T., Kita, N., Keen, N.T., Benen, J.A.E., et al. 1999. Structure of a plant cell wall fragment complexed to pectate lyase C. Plant Cell 11: 1081–1092.Google Scholar
  125. Scheller, H.V., Doong, R.L., Ridley, B.L. and Mohnen, D. 1999. Pectin biosynthesis: a solubilized α-1,4-galacturonosyltransferase from tobacco catalyzes the transfer of galacturonic acid from UDP-galacturonic acid onto the non-reducing end of homogalacturonan. Planta 207: 512–517.Google Scholar
  126. Schols, H.A., Bakx, E.J., Schipper, D. and Voragen, A.G.J. 1995. A xylogalacturonan subunit present in the modified hairy regions of apple pectin. Carbohydrate Res. 279: 265–279.Google Scholar
  127. Schols, H.A. and Voragen, A.G.J. 1996. Complex pectins: structure elucidation using enzymes. In: J. Visser and A.G.J. Voragen (Eds.) Pectins and Pectinases, Elsevier Science, Amsterdam, pp. 3–19.Google Scholar
  128. Schmohl, N. and Horst, W.J. 2000. Cell wall pectin content modulates aluminium sensitivity of Zea mays (L.) cells grown in suspension culture. Plant Cell Envir. 23: 735–742.Google Scholar
  129. Scott, M., Pickersgill, R.W., Hazlewood, G.P., Gilbert, H.J. and Harris, G.W. 1999. Crystallization and preliminary X-ray analysis of arabinanase A from Pseudomonas fluorescens subspecies cellulosa. Acta Crystallogr. D55: 544–546.Google Scholar
  130. Sedbrook, J., Hung, K., Carroll, K. and Masson, P. 1998. sku5, a mutation in a pectin esterase-like gene, confers an exaggerated right slanting phenotype on agar surfaces. 9th International Conference on Arabidopsis Research, University of Wisconsin-Madison, USA, abstract p109.Google Scholar
  131. Shedletzky, E., Shmuel M., Trainin. T., Kalman, S. and Delmer, D. 1992. Cell wall structure in cells adapted to growth on the cellulose-synthesis inhibitor 2,6-dichlorobenzonitrile. Plant Physiol. 100: 120–130.Google Scholar
  132. Shevchik, V.E. and HugouvieuxCottePattat, N. 1997. Identification of a bacterial pectin acetyl esterase in Erwinia chrysanthemi 3937. Mol. Microbiol. 24: 1285–1301.Google Scholar
  133. Sieber, P., Schorderet, M., Ryser, U., Buchala, A., Kolattukudy, P., Métraux, J.-P. and Nawrath, C. 2000. Transgenic arabidopsis plants expressing a fungal cutinase show alterations in the structure and properties of the cuticle and postgenital organ fusions. Plant Cell 12: 721–737.Google Scholar
  134. Simpson, S.D., Ashford, D.A., Harvey, D.J. and Bowles, D.J. 1998. Short chain oligogalacturonides induce ethylene production and expression of the gene encoding aminocyclopropane 1-carboxylic acid oxidase in tomato plants. Glycobiology 8: 579–583.Google Scholar
  135. Sinha, N. and Lynch, M. 1998. Fused organs in the adherent1 mutation in maize show altered epidermal walls with no perturbations in tissue identities. Planta 206: 184–195.Google Scholar
  136. Smith, B.G. and Harris, P.J. 1999. The polysaccharide composition of Poales cell walls: Poaceae cell walls are not unique. Biochem. System. Ecol. 27:33–53.Google Scholar
  137. Smith, C.J.S, Watson, C.F., Morris, P.C., Bird, C.R., Seymour, G.B., Gray, J.E., et al. 1990. Inheritance and effect on ripening of antisense polygalacturonase genes in transgenic tomatoes. Plant Mol. Biol. 14: 369–379.Google Scholar
  138. Smith, D.L. and Gross, K.C. 2000. A family of at least seven β-galactosidase genes is expressed during tomato fruit development. Plant Physiol. 123: 1173–1183.Google Scholar
  139. Sørensen, S.O., Pauly, M., Bush. M., Skjøt, M., McCann, M.C., Borkhardt, B. and Ulvskov, P. 2000. Pectin engineering: modification of potato pectin by in vivo expression of an endo-1,4-β-D-galactanase. Proc. Natl. Acad. Sci. USA 97: 7639–7644.Google Scholar
  140. Steele-King, C.G., Willats, W.G.T. and Knox, J.P. 2000. Arabinogalactan-proteins and cell development in roots and somatic embryos. In: E.A. Nothnagel, A Bacic and A.E. Clarke (Eds.) Cell and Developmental Biology of Arabinogalactan Proteins, Kluwer Academic Publishers Plenum, pp. 95–108.Google Scholar
  141. Tegeder, M., Wang, X.-D., Frommer, W.B., Offler, C.E. and Patrick, J.W. 1999. Sucrose transport into developing seeds of Pisum sativum L. Plant J. 18: 151–161.Google Scholar
  142. Thibault, J.F., Renard, C.M.G.C., Axelos, M.V., Roger, P. and Crepeau, M.J. 1993. Studies of the length of homogalacturonic regions in pectins by acid-hydrolysis. Carbohydrate Res. 238: 271–286.Google Scholar
  143. Thompson, A.J., Tor, M., Barry, C.S., Vrebalov, J., Orfila, C., Jarvis, M.C., et al. 1999. Molecular and genetic characterization of a novel pleiotropic tomato-ripening mutant. Plant Physiol. 120: 383–389.Google Scholar
  144. Thompson, J.E. and Fry, S.C. 2000. Evidence for covalent linkage between xyloglucan and acidic pectins in suspension-cultured rose cells. Planta 211: 275–286.Google Scholar
  145. Tibbits, C.W., MacDougall, A.J. and Ring, S.G. 1998. Calcium binding and swelling behaviour of a high methoxyl pectin gel. Carbohydrate Res. 310: 101–107.Google Scholar
  146. Tieman, D.M. and Handa, A.K. 1994. Reduction in pectin methylesterase activity modifies tissue integrity and cation levels in ripening tomato (Lycopersicon esculentum Mill.) fruits. Plant Physiol. 106: 429–436.Google Scholar
  147. Torki, M., Mandaron, P., Mache, R. and Falconet, D. 2000. Characterization of a ubiquitous expressed gene family encoding polygalacturonase in Arabidopsis thaliana. Gene 242: 427–436.Google Scholar
  148. van Alebeek, G.J.,W.M., Zabotina, O., Beldman, G., Schols, H.A. and Voragen, A.G.J. 2000.Esterification and glycosidation of oligogalacturonides: examination of the reaction products using MALDI-TOF MS and HPAEC. Carbohydrate Polymers 43: 39–46.Google Scholar
  149. VandenBosch, K.A., Bradley, D.J., Knox, J.P., Perotto, S., Butcher, G.W. and Brewin, N.J. 1989. Common components of the infection thread matrix and the intercellular space identified by immunocytochemical analysis of pea nodules and uninfected roots. EMBO J. 8: 335–342.Google Scholar
  150. van der Vlugt-Bergmans, C.J.B., Meeuwsen, P.J.A., Voragen, A.G.J. and van Ooyen, A.J.J. 2000. Endo-xylogalacturonan hydrolase, a novel pectinolytic enzyme. Appl. Envir. Microbiol. 66: 36–41.Google Scholar
  151. van Santen, Y., Benen, J.A.E., Schröter, K.-H., Kalk, K.H., Armand, S., Visser, J. and Dijkstra, B.W. 1999. 1.68-Å crystal structure of endopolygalacturonase II from Aspergillus niger and identification of active site residues by site-directed mutagenesis. J. Biol. Chem. 274: 30474–30480.Google Scholar
  152. Vicré, M., Jauneau, A., Knox, J. P. and Driouich A. 1998. Immunolocalization of β(1→4)-and β (1→6)-D-galactan epitopes in the cell wall and Golgi stacks of developing flax root tissues. Protoplasma 203: 26–34.Google Scholar
  153. Vidal, S., Salmon, J.M., Williams, P. and Pellerin, P. 1999. Penicillium daleae, a soil fungus able to degrade rhamnogalacturonan II, a complex pectic polysaccharide. Enzyme Microbiol. Technol. 24: 283–290.Google Scholar
  154. Vidal, S., Doco, T., Williams, P., Pellerin, P., York, W.S., O'Neill, M.A., et al. 2000. Structural characterization of the pectic polysaccharide rhamnogalacturonan II: evidence for the back-bone location of the aceric acid-containing oligoglycosyl side chain. Carbohydrate Res. 326: 277–294Google Scholar
  155. Vitali, J., Schick, B., Kester, H.C.M., Visser, J. and Jurnak, F. 1998. The three-dimensional Structure of Aspergillus niger pectin lyase B at 1.7 Å resolution. Plant Physiol. 116: 69–80.Google Scholar
  156. Wallace, G. and Fry, S.C 1994. Phenolic components of the plant cell wall. Int. Rev. Cytol. 151: 229–267.Google Scholar
  157. Walkinshaw, M.D. and Arnott, S. 1981. Conformations and interactions of pectins. II. Models of junction zones in pectinic acid and calcium pectate gels. J. Mol. Biol. 53: 1075–1085.Google Scholar
  158. Wen, F., Zhu, Y. and Hawes, M.C. 1999. Effect of pectin methylesterase gene expression on pea root development. Plant Cell 11: 1129–1140.Google Scholar
  159. Willats, W.G.T., Marcus, S.E. and Knox J.P. 1998. Generation of a monoclonal antibody specific to (1→5)-α-L-arabinan. Carbohydrate Res. 308: 149–152.Google Scholar
  160. Willats, W.G.T., Gilmartin P.M., Mikkelsen, J.D. and Knox, J.P. 1999a. Cell wall antibodies without immunization: Generation and use of de-esterified homogalacturonan block-specific antibodies from a naive phage display library. Plant J. 18: 57–65.Google Scholar
  161. Willats, W.G.T., Steele-King, C.G., Marcus, S.E. and Knox, J.P. 1999b. Side chains of pectic polysaccharides are regulated in relation to cell proliferation and cell differentiation. Plant J. 20: 619–628.Google Scholar
  162. Willats, W.G.T., Limberg, G., Bucholt, H.C., van Alebeek, G.-J., Benen, J., Christensen, T. M.I.E., et al. 2000a. Analysis of pectic epitopes recognised by hybridoma and phage display monoclonal antibodies using defined oligosaccharides, polysaccharides and enzymatic degradation. Carbohydrate Res. 327: 309–320.Google Scholar
  163. Willats, W.G.T., Steele-King, C.G., McCartney, L., Orfila, C., Marcus S.E. and Knox, J.P. 2000b. Making and using antibody probes to study plant cell walls. Plant Physiol. Biochem. 38: 27–36.Google Scholar
  164. Willats, W.G.T., Orfila, C., Limberg, G., Buchholt, H.C., van Ale-beek, G.-J.W.M., Voragen, A.G.J., et al. 2001. Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls: implications for pectin methyl esterase action, matrix properties and cell adhesion. J. Biol. Chem. 276: 19404–19413.Google Scholar
  165. Williams, M.N.V., Freshour, G., Darvill, A.G., Albersheim, P. and Hahn, M.G. 1996. An antibody Fab selected from a recombinant phage display library detects deesterified pectic polysaccharide rhamnogalacturonan II in plant cells. Plant Cell 8: 673–685.Google Scholar
  166. Williamson, G. 1991. Purification and characterization of pectin acetylesterase from orange peel. Phytochemistry 30: 445–449.Google Scholar
  167. Yao, C., Conway, W.S., Ren, R., Smith, D., Ross, G.S. and Sams, C.E. 1999. Gene encoding polygalacturonase inhibitor in apple fruit is developmentally regulated and activated by wounding and fungal infection. Plant Mol. Biol. 39: 1231–1241.Google Scholar
  168. Yu, L. and Mort, A.J. 1996. Partial characterization of xylogalacturonans from cell walls of ripe watermelon fruit: inhibition of endopolygalacturonase activity by xylosylation. In: J Visser and A.G.J. Voragen (Eds.) Pectins and Pectinases, Elsevier Science, Amsterdam, pp. 79–88.Google Scholar
  169. Zhan, D., Janssen, P. and Mort, A.J. 1998. Scarcity or complete lack of single rhamnose residues interspersed within the homogalacturonan regions of citrus pectin. Carbohydrate Res. 308: 373–380.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • William G.T. Willats
    • 1
  • Lesley McCartney
    • 1
  • William Mackie
    • 2
  • J. Paul Knox
    • 1
  1. 1.Centre for Plant SciencesUniversity of LeedsLeedsUK
  2. 2.School of Biochemistry & Molecular BiologyUniversity of LeedsLeedsUK

Personalised recommendations