Topoi

, Volume 20, Issue 1, pp 53–63

Why Anti-Realists and Classical Mathematicians Cannot Get Along

  • Stewart Shapiro
Article
  • 107 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benacerraf, P. and Putnam, H.: 1983, Philosophy of Mathematics, second edition, Cambridge: Cambridge University Press.Google Scholar
  2. Bishop, E.: 1967, Foundations of Constructive Analysis, New York: McGraw-Hill.Google Scholar
  3. Boolos, G.: 1995, Introductory note to Gödel (1951), in Gödel (1995), 290–304.Google Scholar
  4. Brouwer, L. E. J.: 1912, Intuitionisme en Formalisme, Gronigen: Noordhoof; translated as ‘Intuitionism and Formalism’, in Benacerraf and Putnam (1983), 77–89.Google Scholar
  5. Brouwer, L. E. J.: 1948, ‘Consciousness, Philosophy and Mathematics’, in Benacerraf and Putnam (1983), 90–96.Google Scholar
  6. Dummett, M.: 1973, ‘The Philosophical Basis of Intuitionistic Logic’, in M. Dummett (Ed.),Truth and Other Enigmas, Cambridge, Massachusetts: Harvard University Press, 1978, pp. 215–247; reprinted in Benacerraf and Putnam (1983), pp. 97-129.Google Scholar
  7. Dummett, M.: 1977, Elements of Intuitionism, Oxford: Oxford University Press.Google Scholar
  8. Dummett, M.: 1991, The Logical Basis of Metaphysics, Cambridge, Massachusetts: Harvard University Press.Google Scholar
  9. Gödel, K.: 1951, ‘Some Basic Theorems on the Foundations of Mathematics and their Implications’, in Gödel (1995), pp. 304–323.Google Scholar
  10. Gödel, K.: 1995, Collected Works III, Oxford: Oxford University Press.Google Scholar
  11. Heyting, A.: 1931, ‘The Intuitionistic Foundations of Mathematics’, in Benacerraf and Putnam (1983), pp. 52–61.Google Scholar
  12. Heyting, A.: 1956, Intuitionism, an Introduction, Amsterdam: North Holland.Google Scholar
  13. Hilbert, D.: 1900, ‘Mathematische Probleme’, translated in Bulletin of the American Mathematical Society 8 (1902), 437–479.CrossRefGoogle Scholar
  14. Lewis, D.: 1993, ‘Mathematics is Megethology’, Philosophia Mathematica 1(3), 3–23.CrossRefGoogle Scholar
  15. McCarty, C.: 1987, ‘Variations on a Thesis: Intuitionism and Computability’, Notre Dame Journal of Formal Logic 28, 536–580.CrossRefGoogle Scholar
  16. Posy, C.: 1984, ‘Kant's Mathematical Realism’, The Monist 67, 115–134.Google Scholar
  17. Shapiro, S.: 1981, ‘Understanding Church's Thesis’, Journal of Philosophical Logic 10, 353–365.CrossRefGoogle Scholar
  18. Shapiro, S.: 1993, ‘Anti-realism and Modality’, in J. Czermak (Ed.), Philosophy of Mathematics: Proceedings of the Fifteenth International Wittgenstein Symposium 1, Vienna: Verlag-Hölder-Pichler-Tempsky, pp. 269–287.Google Scholar
  19. Shapiro, S.: 1993a, ‘Understanding Church's Thesis, Again’, Acta Analytica 11, 59–77.Google Scholar
  20. Shapiro, S.: 1998, ‘Incompleteness, Mechanism, and Optimism’, Bulletin of Symbolic Logic 4, 273–302.CrossRefGoogle Scholar
  21. Tennant, N.: 1996, ‘The Law of Excluded Middle is Synthetic A Priori, If Valid’, Philosophical Topics 24, 205–229.Google Scholar
  22. Tennant, N.: 1997, The Taming of the True, Oxford: Oxford University Press.Google Scholar
  23. Wang, H.: 1974, From Mathematics to Philosophy, London: Routledge and Kegan Paul.Google Scholar
  24. Wang, H.: 1987, Reflections on Kurt Gödel, Cambridge, Massachusetts: The MIT Press.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Stewart Shapiro
    • 1
  1. 1.The Ohio State UniversityThe University of St. AndrewsU.S.A.

Personalised recommendations