Experimental & Applied Acarology

, Volume 25, Issue 2, pp 97–107

Potential Role of Parasitism in the Evolution of Mutualism in Astigmatid Mites: Hemisarcoptes Cooremani as a Model

  • Aurali E. Holte
  • Marilyn A. Houck
  • Nathan L. Collie
Article

Abstract

Phoresy is a symbiotic interaction that results in dispersal, benefiting the relocated organism without negatively impacting the phoretic host. It has long been considered that phoresy among astigmatid mites is somehow an intermediate precursor to the evolution of parasitism within the group. In astigmatid mites, only the heteromorphic deutonymph (hypopode) participates in phoretic dispersal, and the plesiomorphic hypopode may be the key to understanding the dynamics of the evolution of that parasitism. Hypopodes of Hemisarcoptes cooremani (Acari: Acariformes) and their phoretic beetle host Chilocorus cacti (Coleoptera: Coccinellidae) have become the experimental focus for studies concerned with the potential forces that influence the transition of a free-living life style into various coevolved relationships. Previous radiolabeling studies applied to H. cooremani and C. cacti determined that hypopodes of H. cooremani acquired resources from adults of C. cacti while in transit, negating the paradigm that the heteromorphy was purely phoretic. To further probe this relationship, we tested whether materials could be passed from the mites to their hosts. We report here a study using a tritium radiolabel, which indicated that beetles also acquire resources from the hypopodes. These results have implications for understanding the complex relationship between H. cooremani and C. cacti. We propose that this relationship should now correctly be defined as mutualistic (not phoretic) and develop a general model for the potential role of parasitism in the evolution of mutualism among the Astigmata.

biological control Chilocorus coevolution Hemisarcoptes phoresy tritium radiolabeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Delfosse, E. 1993. Biological control of Euonymus Scale. Program Aid Number 1508, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Washington, D.C.Google Scholar
  2. Gerson, U. 1967. Observations on Hemisarcoptes coccophagus Meyer (Astigmata: Hemisarcoptidae), with a new synonym. Acarologia 9: 632-638.Google Scholar
  3. Gerson, U.,OConnor, B.M. andHouck, M.A. 1990. Acari In: Armored scale insects, their biology, natural enemies and control, D. Rosen (ed.), Vol. B, pp. 77-97. Elsevier, Amsterdam.Google Scholar
  4. Gerson, U. andSchneider, R. 1982. The hypopus of Hemisarcoptes coccophagus Meyer (Acari: Astigmata: Hemisarcoptidae). Acarologia 23: 171-176.Google Scholar
  5. Gulmahamad, H. andDeBach, P. 1978. Biological control of the San Jose Scale Quadraspidiotus perniciosus (Comstock) (Homoptera: Deaspidiae) in southern California. Hilgardia 46: 205-238.Google Scholar
  6. Houck, M.A. 1994. Adaptation and transition into parasitism from commensalism: a phoretic model. In: Mites: ecological and evolutionary analyses of life history patterns, M.A. Houck (ed.), pp. 252-281. Chapman and Hall.Google Scholar
  7. Houck, M.A. 1998. Subelytral ultrastructure of Chilocorus (Coleoptera: Coccinellidae): in-fluence on phoresy by Hemisarcoptes (Acari: Hemisarcoptidae). Exp. Appl. Acarol. 22: 1-22.Google Scholar
  8. Houck, M.A. andCohen, A.C. 1995. The potential role of phoresy in the evolution of parasitism: radiolabelling (tritium) evidence from an astigmatid mite. Exp. Appl. Acarol. 19: 677-694.Google Scholar
  9. Houck, M.A. andOConnor, B.M. 1991. Phoresy in the acariform acari. Annu. Rev. Entomol. 36: 611-636.Google Scholar
  10. Houck, M.A. andOConnor, B.M. 1996. Temperature and resource effects of key morphological characters of Hemisarcoptes cooremani and Hemisarcoptes malus (Acari: Hemisarcoptidae). Exp. Appl. Acarol. 20: 667-682.Google Scholar
  11. Huang, Q.,Attygalle, A.B.,Meinwald, J.,Houck, M.A. andEisner, T. 1998. Chilocorine C: A new ‘dimeric’ alkaloid from a coccinellid beetle, Chilocorus cacti. J. Natur. Prod. 61: 598-601.Google Scholar
  12. Luck, R.F.,Jiang, G andHouck, M.A. 1999. A laboratory evaluation of the astigmatid mite Hemisarcoptes cooremani Thomas (Acari: Hemisarcoptidae) as a potential biological control agent for an Armored Scale, Aonidiella aurantii (Maskell) (Homoptera: Diaspididae). Biol. Control 15: 173-183.Google Scholar
  13. Matlab©. 1984-1998. The Language of Technical Computing, ver.5. The MathWorks, Natick, Mass.Google Scholar
  14. Mayr, E. 1963. Animal Species and Evolution. Belknap Press of Harvard Univesity Press, Cambridge, Mass.Google Scholar
  15. McCormick, K.D.,Attygalle, A.B.,Xu, S-C,Svatos, A.,Meinwald, J.,Houck, M.A.,Blankespoor, C.L. andEisner, T. 1994. Chilororine: heptacyclic alkaloid from a coccinellid beetle. Tetrahedron 50: 2365-2372.Google Scholar
  16. OConnor, B.M. andHouck, M.A. 1989. Two new genera of Hemisarcoptidae (Acari: Astigmata) from the Huron Mountains of Northern Michigan. Gr. Lakes Entomol. 22: 1-10.Google Scholar
  17. Price, P.W. 1980. Evolutionary Biology of Parasites. 237 pp. Princeton University Press, Princeton, NJ.Google Scholar
  18. Rice, W.R. 1989. Analyzing tables of statistical tests. Evolution 43: 223-225.Google Scholar
  19. Shi, X.,Attygalle, A.B.,Meinwald, A.J.,Houck, M.A. andEisner, T. 1995. Spirocyclic defensive alkaloid from a coccinellid beetle. Tetrahedron 51: 8711-8718.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Aurali E. Holte
    • 1
    • 2
  • Marilyn A. Houck
    • 1
  • Nathan L. Collie
    • 1
  1. 1.Department of Biological SciencesTexas Tech UniversityLubbockUSA
  2. 2.Texas Tech University Health Sciences CenterLubbockUSA

Personalised recommendations