Concentration by Evaporation and the Prebiotic Synthesis of Cytosine

  • Kevin E. Nelson
  • Michael P. Robertson
  • Matthew Levy
  • Stanley L. Miller
Article

Abstract

The efficient prebiotic synthesis of cytosine from urea andcyanoacetaldehyde (CA) has recently been claimed to be invalidon the basis of possible side reactions of the starting materials and the inapplicability of prebiotic syntheses usingdrying beach conditions. We therefore have investigated the synthesis of cytosine and uracil from urea and cyanoacetaldehydeat 100 °C under dry-down conditions, and in solution at 4 °C and -20 °C. We find that cytosine isproduced from the low temperature experiments more efficientlythan calculated from the Arrhenius extrapolation from highertemperatures, i.e., 60-120 °C. In addition, we findthat CA dimer is as efficient as the monomer in cytosine synthesis. We also studied whether evaporating very dilutesolutions of nonvolatile organic compounds will concentrateaccording to theory. Solutions as dilute as 10-4 M concentrate from pure water approximately according to theory.Similar solutions in 0.5 M NaCl have less than theoreticalconcentrations due to absorption, but concentrations neardryness were very high.

cyanoacetaldehyde cyanoacetaldehyde dimer cytosine dry-down conditions evaporation prebiotic synthesis uracil 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bishop, M. J., Lohrmann, R. and Orgel, L. E.: 1972, Prebiotic Phosphorylation of Thymidine at 65°C in Simulated Desert Conditions. Nature 237, 162–164.Google Scholar
  2. Burton, F. G., Lohrmann, R. and Orgel, L. E.: 1974, On the Possible Role of Crystals in the Origins of Life. VII. The Adsorption and Polymerization of Phosphoramidates by Montmorillonites Clay. J. Mol. Evol. 3, 141–150.Google Scholar
  3. Byk, G. and Gilon, C.: 1992, Building Units of N-Backbone Cyclic Peptides. 1. Synthesis of Protected N-(ω-aminoalkylene)Amino Acids and Their Incorporation into Dipeptide Units. J. Org. Chem. 57, 5687–5692.Google Scholar
  4. Deamer, D. W. and Oró, J.: 1980, Role of Lipids in Prebiotic Structures. Biosystems 12, 167–175.Google Scholar
  5. Eichberg, J., Sherwood, E., Epps, D. E. and Oró, J.: 1977, Cyanamide Mediated Syntheses under Plausible Primitive Earth Conditions. IV. The Synthesis of Acylglycerols. J. Mol. Evol. 10, 221–230.Google Scholar
  6. Estévez, C. and Miller, S. L.: 2000, Equilibrium and Kinetics of the Abdol Condensation of Cyanoacetaldehyde. Origins Life Evol. Biosphere 30, 135–136.Google Scholar
  7. Ferris, J. P.: 1968, A Prebiological Phosphorylating Agent. Science 161, 53–54.Google Scholar
  8. Ferris, J. P., Goldstein, G. and Beaulieu, D. J.: 1970, Chemical Evolution. IV. An Evaluation of Cyanovinyl Phosphate as a Prebiotic Phosphorylating Agent. J. Amer. Chem. Soc. 92, 6598–6603.Google Scholar
  9. Ferris, J. P., Zamek, O. S., Altbuch, A. M. and Freiman, H.: 1974, Chemical Evolution. 18. Synthesis of Pyrimidines from Guanidine and Cyanoacetaldehyde. J. Mol. Evol. 3, 301–309.Google Scholar
  10. Flores, J. J. and Leckie, J. O.: 1973, Peptide Formation Mediated by Cyanate. Nature 244, 435–437.Google Scholar
  11. Fox, S. W. and Dose, K.: 1972, Molecular Evolution and the Origin of Life. W. H. Freeman, San Francisco, pp. 66–134.Google Scholar
  12. Frick, L., MacNeela, J. P. and Wolfenden, R.: 1987, Transition State Stabilization by Deaminases: Rates of Nonenzymatic Hydrolysis of Adenosine and Cytidine. Bioorg. Chem. 15, 100–108.Google Scholar
  13. Friedman, N., Haverland, W. J. and Miller, S. L.: 1971, 'Prebiotic Synthesis of the Aromatic Amino Acids', in Buvet, R. and Ponnamperuma, C. (eds.), Chemical Evolution and the Origin of Life., North Holland, Amsterdam, pp. 123–135.Google Scholar
  14. Fuller,W. D., Sanchez, R. A. and Orgel, L. E.: 1972a, Studies in Prebiotic Synthsis. VI. Synthesis of Purine Nucleosides. J. Mol. Biol. 67, 25–33.Google Scholar
  15. Fuller,W. D., Sanchez, R. A. and Orgel, L. E.: 1972b, Studies in Prebiotic Synthesis. VII. Solid-State Synthesis of Purine Nucleosides. J. Mol. Evol. 1, 249–257.Google Scholar
  16. Keefe, A. D. and Miller, S. L.: 1995, Are Polyphoshates or Phosphate Esters Prebiotic Reagents? J. Mol. Evol. 41, 693–702.Google Scholar
  17. Levy, M. and Miller, S. L.: 1998, The Stability of the RNA Bases: Implications for the Origin of life. Proc. Natl. Acad. Sci. U.S.A. 95, 7933–7938.Google Scholar
  18. Lohrmann, R. and Orgel, L. E.: 1971, Urea-Inorganic Phosphate Mixtures as Prebiotic Phosphorylating Agents. Science 171, 490–494.Google Scholar
  19. Lorhmann, R. and Orgel, L. E.: 1973, Prebiotic Activation Processes, Prebiotic Peptide-Formation in the Solid State. I. Reactions of Benzoate Ion and Glycine with Adenosine 5′-Phosphorimidazolide. Nature 244, 418–420.Google Scholar
  20. Lohrmann, R., Ranganathan, R., Sawai, H. and Orgel, L. E.: 1975, Prebiotic Peptide-Formation in the Solid State. I. Reactions of Benzoate Ion and Glycine with Adenosine 5′-Phosphorimidazolide. J. Mol. Evol. 5, 57–73.Google Scholar
  21. Miller, S. L.: 1957, The Mechanism of Synthesis of Amino Acids by Electric Discharges. Biochim. Biophys. Acta 23, 480–489.Google Scholar
  22. Oró, J. and Stephen-Sherwood, E.: 1976, Abiotic Origin of Biopolymers. Origins of Life 7, 37–47.Google Scholar
  23. Ostberg, R. and Orgel, L. E.: 1972, Polyphosphate and Trimetaphosphate Formation under Potentially Prebiotic Conditions. J. Mol. Evol. 1, 241–248.Google Scholar
  24. Ostberg, R., Orgel, L. E. and Lorhmann, R.: 1973, Further Studies of Urea-Catalyzed Phosphorylation Reactions. J. Mol. Evol. 2, 231–234.Google Scholar
  25. Raulin, F. and Toupance, G.: 1975, No 27.-étude Cinétique de l'évolution du Cyanoacétaldehyde en Solution Aqueuse. Bull. Soc. Chem. France, 188–195.Google Scholar
  26. Robertson, M. P. and Miller, S. L.: 1995, An Efficient Prebiotic Synthesis of Cytosine and Uracil. Nature 375, 772–774.Google Scholar
  27. Robertson, M. P., Levy, M. and Miller, S. L.: 1996, Prebiotic Synthesis of Diaminopyrimidine and Thiocytosine. J. Mol. Evol. 43, 543–550.Google Scholar
  28. Sanchez, R. A., Ferris, J. P. and Orgel, L. E.: 1966, Cyanoacetylene in Prebiotic Synthesis. Science 154, 784–785.Google Scholar
  29. Sawai, H., Lohrmann, R. and Orgel, L. E.: 1975, Prebiotic Peptide-Formation in the Solid State. II. Reaction of Glycine with Adenosine 5′-Triphosphate and P1, P2-Diadenosine-Pyrophosphate. J. Mol. Evol. 6, 165–184.Google Scholar
  30. Schwartz, A. W. and Deuss, H.: 1971, 'Concentrative Processes and the Origin of Organic Phosphates', in Schwartz, A.W. (ed.), Theory and Experiment in Exobiology, Vol. 1, Wolters-Noordhoff Publishing, Groningen, The Netherlands, pp. 75–81.Google Scholar
  31. Schwartz, A. W.: 1972, Prebiotic Phosphorylation-Nucleotide Synthesis with Apatite. Biochim. Biophys. Acta 281, 477–480.Google Scholar
  32. Schwartz, A. W. and Chittenden, G. J. F.: 1977, Synthesis of Uracil and Thymine under Simulated Prebiotic Conditions. Biosystems 9, 87–92.Google Scholar
  33. Shapiro, R.: 1994, The Prebiotic Role of Adenine: A Critical Analysis. Origins Life Evol. Biosphere 24, 147–148.Google Scholar
  34. Shapiro, R.: 1995, The Prebiotic Role of Adenine: A Critical Analysis. Origins Life Evol. Biosphere 25, 83–98.Google Scholar
  35. Shapiro, R.: 1999, Prebiotic Cytosine Synthesis: A Critical Analysis and Implications for the Origin of Life. Proc. Natl. Acad. Sci. U.S.A. 96, 4396–4401.Google Scholar
  36. Stribling, R. and Miller, S. L.: 1987, Energy Yields for Hydrogen Cyanide and Formaldehyde Syntheses: The HCN and Animo Acid Concentrations, in the Primitive Ocean. Origins of Life 17, 261–273.Google Scholar
  37. Usher, D. A. and McHale, A. H.: 1976, Nonenzymatic Joining of Oligoadenylates on a Polyuridylic Acid Template. Science 192, 53–54.Google Scholar
  38. Usher, D. A.: 1977, Early Chemical Evolution of Nucleic Acids: A Theoretical Model. Science 196, 311–313.Google Scholar
  39. Usher, D. A. and Yee, D.: 1979, Geometry of the Dry-State Oligomerization of 2′,3′-Cyclic Phosphates. J. Mol. Evol. 13, 287–293.Google Scholar
  40. Yanagawa, H., Nishizawa, M. and Kojima, K.: 1984, A Possible Prebiotic Peptide Formation from Glycinamide and Related Compounds. Origins of Life 14, 267–272.Google Scholar
  41. Zhao, M. X. and Bada, J. L.: 1995, Determination of Alpha-Dialkylamino Acids and Their Enantiomers in Geological Samples by High-Performance Liquid Chromatography after Derivatization with a Chiral Adduct of O-Phthaldialdehyde. J. Chromatogr. A. 690, 55–63.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Kevin E. Nelson
    • 1
  • Michael P. Robertson
    • 2
  • Matthew Levy
    • 2
  • Stanley L. Miller
    • 3
  1. 1.Department of BiochemistryUniversity of Illinois at Urbana-Champaign
  2. 2.Department of Molecular BiologyThe University of Texas at AustinAustin
  3. 3.Department of Chemistry and BiochemistryUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations