Plant Molecular Biology

, Volume 46, Issue 5, pp 603–614 | Cite as

A combination of the F-box motif and kelch repeats defines a large Arabidopsis family of F-box proteins

  • Miguel A. Andrade
  • Miguel González-Guzmán
  • Ramón Serrano
  • Pedro L. Rodríguez


In the sequences released by the Arabidopsis Genome Initiative (AGI), we have discovered a new large gene family (48 genes as of July 2000). A detailed computational and biochemical analysis of the predicted gene products reveals a novel family of plant F-box proteins, where the amino (N)-terminal F-box motif is followed by four kelch repeats and a characteristic carboxy-terminal domain. F-box proteins are an expanding family of eukaryotic proteins, which have been shown in some cases to be critical for the controlled degradation of cellular regulatory proteins via the ubiquitin pathway. The F-box motif of the At5g48990 gene product, a member of the family, was shown to be functionally active by its ability to mediate the in vitro interaction between At5g48990 and ASK1 proteins. F-box proteins specifically recruit the targets to be ubiquitinated, mainly through protein-protein interaction modules such as WD-40 domains or leucine-rich repeats (LRRs). The kelch repeats of the family described here form a potential protein-protein interaction domain, as molecular modelling of the kelch repeats according to the galactose oxidase crystal structure (the only solved structure containing kelch repeats) predicts a β-propeller. The identification of this family of F-box proteins greatly expands the field of plant F-box proteins and suggests that controlled degradation of cellular proteins via the ubiquitin pathway could play a critical role in multiple plant cellular processes.

Arabidopsis F-box motif gene family genome kelch repeat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, J., Kelso R. and Cooley, L. 2000. The kelch repeat super-family of proteins: propellers of cell function. Trends Cell Biol. 10: 17–24.Google Scholar
  2. AGI. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815.Google Scholar
  3. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids. Res. 25: 3389–3402.PubMedGoogle Scholar
  4. Andrade, M.A., Ponting, C.P., Gibson, T.J. and Bork, P. 2000. Homology-based method for identification of protein repeats us-ing statistical significance estimates. J. Mol. Biol. 298: 521–537.PubMedGoogle Scholar
  5. Aubourg, S., Boudet, N., Kreis M. and Lecharny, A. 2000. In Ara-bidopsis thaliana, 1% of the genome codes for a novel protein family unique to plants. Plant Mol. Biol. 42: 603–613Google Scholar
  6. Bai, C., Sen, P., Hofmann, K., Ma, L., Goebl, M., Harper, J.W. and Elledge, S.J. 1996. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86: 263–274PubMedGoogle Scholar
  7. Bateman, A., Birney, E., Durbin, R., Eddy, S.R., Howe, K.L. and Sonnhammer, E.L. 2000. The Pfam protein families database. Nucl. Acids Res. 28: 263–266.PubMedGoogle Scholar
  8. Blanc, G., Barakat, A., Guyot, R., Cooke, R. and Delseny, M. 2000. Extensive duplication and reshuffling in the Arabidopsis genome. Plant Cell 12: 1093–1102.CrossRefPubMedGoogle Scholar
  9. Bork, P. and Doolittle, R.F. 1994. Drosophila kelch motif is derived from a common enzyme fold. J. Mol. Biol. 236: 1277–1282.PubMedGoogle Scholar
  10. Botella, M.A., Coleman, M.J., Hughes, D.E., Nishimura, M.T., Jones, J.D. and Somerville, S.C. 1997. Map positions of 47 Ara-bidopsis sequences with sequence similarity to disease resistance genes. Plant J. 12: 1197–1211.PubMedGoogle Scholar
  11. Cenciarelli, C., Chiaur, D.S., Guardavaccaro, D., Parks, W., Vidal, M. and Pagano, M. 1999. Identification of a family of human F-box proteins. Curr. Biol. 9: 1177–1179.PubMedGoogle Scholar
  12. Craig, K.L. and Tyers, M. 1999. The F-box: a new motif for ubiq-uitin dependent proteolysis in cell cycle regulation and signal transduction. Prog. Biophys. Mol. Biol. 72: 299–328.PubMedGoogle Scholar
  13. Eddy, S.R. 1998. Profile hidden Markov models. Bioinformatics 14: 755–763.Google Scholar
  14. Flor, H.H. 1971. Current status of the gene-for-gene concept. Annu. Rev. Phytopath. 9: 275–296Google Scholar
  15. Gray, W.M. and Estelle, M. 2000. Function of the ubiquitin-proteasome pathway in auxin response. Trends Biochem. Sci. 25: 133–138.PubMedGoogle Scholar
  16. Gray, W.M., del Pozo, J.C., Walker, L., Hobbie, L., Risseeuw, E., Banks, T., Crosby, W.L., Yang, M., Ma, H. and Estelle, M. 1999. Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev. 13: 1678–1691.PubMedGoogle Scholar
  17. Hershko, A. 1997. Roles of ubiquitin-mediated proteolysis in cell cycle control. Curr. Opin. Cell Biol. 9: 788–799.PubMedGoogle Scholar
  18. Hershko, A. and Ciechanover, A. 1998. The ubiquitin system. Annu. Rev. Biochem. 67: 425–479.PubMedGoogle Scholar
  19. Higgins, D.G., Thompson, J.D. and Gibson, T.J. 1996. Using CLUSTAL for multiple sequence alignments. Meth. Enzymol. 266: 383–402.PubMedGoogle Scholar
  20. Ito, N., Phillips, S.E., Yadav, K.D. and Knowles, P.F. 1994. Crystal structure of a free radical enzyme, galactose oxidase. J. Mol. Biol. 238: 794–814.PubMedGoogle Scholar
  21. Kiyosue, T. and Wada, M. 2000. LKP1 (LOV kelch protein 1): a fac-tor involved in the regulation of flowering time in Arabidopsis. Plant J. 23: 807–815.PubMedGoogle Scholar
  22. Kobe, B. and Deisenhofer, J. 1994. The leucine-rich repeat: a versatile binding motif. Trends Biochem. Sci. 19: 415–421.PubMedGoogle Scholar
  23. Koepp, D.M., Harper, J.W. and Elledge, S.J. 1999. How the cyclin became a cyclin: regulated proteolysis in the cell cycle. Cell. 97: 431–434.PubMedGoogle Scholar
  24. Lin, X., Kaul, S., Rounsley, S., Shea, T.P., Benito, M.I., Town, C.D., Fujii, C.Y., Mason, T., Bowman, C.L., Barnstead, M., Feldblyum, T.V., Buell, C.R., Ketchum, K.A., Lee, J., Ronning, C.M., Koo, H.L., Moffat, K.S., Cronin, L.A., Shen, M., Pai, G., van Aken, S., Umayam, L., Tallon, L.J., Gill, J.E. and Venter, J.C. 1999. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402: 761–768.PubMedGoogle Scholar
  25. Mayer, K., Schuller, C., Wambutt, R., Murphy, G., Volckaert, G., Pohl, T., Dusterhoft, A., Stiekema, W., Entian, K.D., Terryn, N., Harris, B., Ansorge, W., Brandt, P., Grivell, L., Rieger, M., Weichselgartner, M., de Simone, V., Obermaier, B., Mache, R., Muller, M., Kreis, M., Delseny, M., Puigdomènech, P., Watson, M. and McCombie, W.R. 1999. Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana. Nature 402: 769–777.Google Scholar
  26. Nelson, D.C., Lasswell, J., Rogg, L.E., Cohen, M.A. and Bartel, B. 2000. FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell 101: 331–340.PubMedGoogle Scholar
  27. Patton, E.E., Willems, A.R. and Tyers, M. 1998. Combinatorial control in ubiquitin-dependent proteolysis: don't Skp the F-box hypothesis. Trends Genet. 14: 236–243.Google Scholar
  28. Ride, J.P., Davies, E.M., Franklin, F.C. and Marshall, D.F. 1999. Analysis of Arabidopsis genome sequence reveals a large new gene family in plants. Plant Mol. Biol. 39: 927–932.Google Scholar
  29. Romero, I., Fuertes, A., Benito, M.J., Malpica, J.M., Leyva, A. and Paz-Ares, J. 1998. More than 80 R2R3-MYB regulatory genes in the genome ofArabidopsis thaliana. Plant J. 14: 273–284.PubMedGoogle Scholar
  30. Rost, B. and Sander, C. 1993. Prediction of protein secondary structure at better than 70% accuracy. J. Mol. Biol. 232: 584–599.PubMedGoogle Scholar
  31. Ruegger, M., Dewey, E., Gray, W.M., Hobbie, L., Turner, J. and Estelle, M. 1998. The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast Grr1p. Genes Dev. 12: 198–207.PubMedGoogle Scholar
  32. Samach, A., Klenz, J.E., Kohalmi, S.E., Risseeuw, E., Haughn, G. and Crosby, W.L. 1999. The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem. Plant J. 20: 433–445.PubMedGoogle Scholar
  33. Schultz, J., Copley, R.R., Doerks, T., Ponting, C.P. and Bork, P. 2000. SMART: a web-based tool for the study of genetically mobile domains. Nucl. Acids Res. 28: 231–234.PubMedGoogle Scholar
  34. Skowyra, D., Craig, K.L., Tyers, M., Elledge, S.J. and Harper, J.W. 1997. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91: 209–219.PubMedGoogle Scholar
  35. Smith, T.F., Gaitatzes, C., Saxena, K. and Neer, E.J. 1999. The WD repeat: a common architecture for diverse functions. Trends Biochem. Sci. 24: 181–185.PubMedGoogle Scholar
  36. Somers, D.E., Schultz, T.F., Milnamow, M. and Kay, S.A. 2000. ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 101: 319–329.PubMedGoogle Scholar
  37. Somerville, C. and Somerville, S. 1999. Plant functional genomics. Science 285: 380–383.Google Scholar
  38. Vriend, G. 1990. WHAT IF: a molecular modeling and drug design program. J. Mol. Graph. 8: 526–529.Google Scholar
  39. Winston, J.T., Koepp, D.M., Zhu, C., Elledge, S.J. and Harper, J.W. 1999. A family of mammalian F-box proteins. Curr. Biol. 9: 1180–1182.PubMedGoogle Scholar
  40. Xiao, W. and Jang, J. 2000. F-box proteins in Arabidopsis. Trends Plant Sci. 5: 454–457.PubMedGoogle Scholar
  41. Xie, D.X., Feys, B.F., James, S., Nieto-Rostro, M. and Turner, J.G. 1998. COI1: anArabidopsis gene required for jasmonate-regulated defense and fertility. Science 280: 1091–1094.Google Scholar
  42. Xue, F. and Cooley, L. 1993. kelch encodes a component of intercellular bridges in Drosophila egg chambers. Cell 72: 681–693.PubMedGoogle Scholar
  43. Zhao, D., Yang, M., Solava, J. and Ma, H. 1999. The ASK1 gene regulates development and interacts with the UFO gene to control floral organ identity in Arabidopsis. Dev. Genet. 25: 209–223.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Miguel A. Andrade
    • 1
  • Miguel González-Guzmán
    • 2
  • Ramón Serrano
    • 2
  • Pedro L. Rodríguez
    • 2
  1. 1.European Molecular Biology LaboratoryHeidelbergGermany
  2. 2.Instituto de Biología Molecular y Celular de PlantasUniversidad Politécnica de Valencia-Consejo Superior de Investigaciones CientíficasValenciaSpain

Personalised recommendations