Plant Molecular Biology

, Volume 45, Issue 5, pp 587–597 | Cite as

Lectin and lectin-related proteins in Lima bean (Phaseolus lunatus L.) seeds: biochemical and evolutionary studies

  • Francesca Sparvoli
  • Cecilia Lanave
  • Annalisa Santucci
  • Roberto Bollini
  • Lucia Lioi


Lectin-related polypeptides are a class of defence proteins found in seeds of Phaseolus species. In Lima bean (P. lunatus), these proteins and their genes have been well characterized in the Andean morphotype, which represents one of the two gene pools of this species. To study the molecular evolution of the lectin family in Lima bean we characterized the polypeptides belonging to this multigene family and cloned the genes belonging to the Mesoamerican gene pool. The latter gene pool contains components similar to those of the Andean pool, namely: an amylase inhibitor-like (AIL), an arcelin-like (ARL) lectin and the less abundant Lima bean lectin (LBL). These proteins originate from an ancestor gene of the lectin type which duplicated to yield the lectin gene and the progenitor of ARL and AIL. In this species, ARL represents an evolutionary intermediate form that precedes AIL. Phylogenetic analysis supports an Andean origin for Lima bean. The molecular evolutionary studies were extended to the genes of common bean and demonstrated that true lectin genes and the ancestor of lectin-related genes are the result of a duplication event that occurred before speciation. Lima and common bean followed different evolutionary pathways and in the latter species a second duplication event occurred that gave rise, in Mesoamerican wild genotypes, to arcelin genes.

α-amylase inhibitor arcelin evolution gene pool Lima bean lectin seed storage proteins 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acosta-Gallegos, J.A., Quintero, C., Vargas, J., Toro, O., Tohme, J. and Cardona, C. 1998. A new variant of arcelin in wild common bean, Phaseolus vulgaris L., from southern Mexico. Genet. Res. Crop Evol. 45: 235–242.Google Scholar
  2. Bollini, R., Vitale, A. and Chrispeels, M.J. 1983. In vivo and in vitro processing of seed reserve protein in the endoplasmic reticulum: evidence for two glycosylation steps.J. Cell Biol. 96: 999–1007.Google Scholar
  3. Bollini, R., Genga, A. and Vitale, A. 1988. Lectin and lectin-like proteins in bean seeds. In: Lectins, vol.6: Biology, Biochemistry, Clinical Biochemistry. Sigma Chemical Company, St. Louis, MO, pp. 237–241.Google Scholar
  4. Cardona, C., Cornegay, J., Posso, C.E., Morales, E. and Ramirez, H. 1990. Comparative value of four arcelin variants in the development of dry bean lines resistant to the Mexican bean weevil. Entomol. Exp. Appl. 56: 197–206.Google Scholar
  5. Ceriotti, A., Vitale, A. and Bollini, R. 1989. Lectin-like proteins accumulate as fragmentation products in bean seed protein bodies. FEBS Lett. 250: 157–160.Google Scholar
  6. Chrispeels, M.J. and Raikhel, N.V. 1991. Lectins, lectin genes, and their role in plant defence. Plant Cell 3: 1–9.Google Scholar
  7. Debouck, D.G., Liñan Jara, J.H., Campana Sierra, A. and de la Cruz Rojas, J.H. 1987. Observations on the domestication of Phase-olus lunatus L. FAO/IBPGR PL. Genet. Resources Newsl. 70: 26–32.Google Scholar
  8. Debouck, D.G., Toro, O., Paredes, O.M., Johnson, W.C. and Gepts, P. 1993. Genetic diversity and ecological distribution of Phase-olus vulgaris (Fabaceae) in northwestern South America. Econ. Bot. 47: 408–423.Google Scholar
  9. Delgado-Salinas, A., Turley, T., Richman, A. and Lavin, M. 1999. Phylogenetic analysis of the cultivated and wild species of Phaseolus (Fabaceae). Syst. Bot. 24: 438–460.Google Scholar
  10. De Moreno, M.R., Smith, J.F. and Smith, R.V. 1985. Silver staining of proteins in polyacrylamide gels: increased sensitivity through a combined Coomassie blue-silver stain procedure. Anal. Biochem. 151: 466–470.Google Scholar
  11. Diaz, C.L., Melchers, L.S., Hooykaas, P.J.J., Lugtenberg, B.J.J. and Kijne, J.W. 1989. Root lectin as a determinant of host-plant specificity in the Rhizobium-legume symbiosis. Nature 338: 579–581.Google Scholar
  12. Durbin, M.L., McCaig, B. and Clegg, M.T. 2000. Molecular evolution of the chalcone synthase multigene family in the morning glory genome. Plant Mol. Biol. 42: 79–92.Google Scholar
  13. Etzler, M.E. 1986. Distribution and function of plant lectins. In: I.E. Liener, N. Sharon and I.J. Goldstein (Eds.) The Lectins, Academic Press, San Diego, CA, pp. 371–435.Google Scholar
  14. Faoro, F., Sparvoli, F., Ceriotti, A. and Bollini, R. 1999. Identification of newly-synthesised precursors of lectin-related proteins in the endoplasmic reticulum of developing lima bean seeds. In: E. Carnovale (Ed.) COST 98: Effect of Antinutrients on the Nutritional Value of Legume Diets, vol. 7. Proceedings of the 6th Scientific Workshop (Rome, 8-10 May 1997), European Communities, Luxembourg, pp. 85–89.Google Scholar
  15. Felsenstein J. 1993. PHYLIP (Phylogeny Inference Package). Department of Genetics, University of Washington, Seattle, WA.Google Scholar
  16. Finardi-Filho, F., Mirkov, E. and Chrispeels, M.J. 1996. A putative precursor protein in the evolution of the bean α-amylase inhibitor. Phytochemistry 43: 57–62.Google Scholar
  17. Fofana, B., Vekemans, X., du Jardin, P. and Baudoin, J.P. 1997. Genetic diversity in Lima bean (Phaseolus lunatus L.) as revealed by RAPD markers. Euphytica 95: 157–165.Google Scholar
  18. Fofana, B., Baudoin, J.P., Vekemans, X., Debouck, D.G. and du Jardin, P. 1999. Molecular evidence for an Andean and secondary gene pool for the Lima bean (Phaseolus lunatus L.) using chloroplast DNA. Theor. Appl. Genet. 98: 202–212.Google Scholar
  19. Galbraith, W. and Goldstein, I.J. 1970. Phytohemagglutinins: a new class of metalloproteins: isolation, purification and some properties of the lectin from Phaseolus lunatus. FEBS Lett. 9: 197–201.Google Scholar
  20. Galbraith, W. and Goldstein, I.J 1972. Phytohemagglutinin of the Lima bean (Phaseolus lunatus). Isolation, characterization, and interaction with type A blood-group substance. Biochemistry 11: 3976–3984.Google Scholar
  21. Gepts, P. 1988. Phaseolin as an evolutionary marker. In: P. Gepts (Ed.)Genetic Resources of Phaseolus Beans, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 215–241.Google Scholar
  22. Gutierrez-Salgado, A., Gepts, P. and Debouck, D.G. 1995. Evidence for two gene pools of the Lima bean, Phaseolus lunatus L., in the Americas. Genet. Res. Crop Evol. 42: 15–28.Google Scholar
  23. Hamelryck, T.W., Dao-Thi, M-H, Poortmans, F., Chrispeels, M.J., Wyns, L. and Loris, R. 1996. The crystallographic structure of phytohemagglutinin-L. J. Biol. Chem. 271: 20479–20485.Google Scholar
  24. Helenius, A., Trombetta, E.S., Herbert, D.N. and Simons, J.F. 1997. Calnexin, calreticulin and the folding of glycoproteins. Trends Cell Biol. 7: 193–200.Google Scholar
  25. Horowitz, J. 1985. A Phaseolus mutation results in a reduced level of lectin mRNA. Mol. Gen. Genet. 198: 482–485.Google Scholar
  26. Ishimoto, M., Sato, I., Chrispeels, M.J. and Kitamura, K. 1996. Bruchid resistance of transgenic azuki bean expressing seed α-amylase inhibitor in common bean. Entomol. Exp. Appl. 79: 309-315.Google Scholar
  27. Jordan, E.T. and Goldstein, I.J. 1994. The sequence of a second member of the Lima bean lectin gene family and the expression and characterization of recombinant lectin in Escherichia coli. J. Biol. Chem. 269: 7674–7681.Google Scholar
  28. Lanave, C., Preparata, G., Saccone, C. and Serio, G. 1984. A new method for calculating evolutionary substitution rates. J. Mol. Evol. 20: 86–93.Google Scholar
  29. Lioi, L., 1994. Morphotype relationships in Lima bean (Phaseolus lunatus L.) deduced from variation of the evolutionary marker phaseolin. Genet. Res. Crop Evol. 41: 81–85.Google Scholar
  30. Lioi, L., Lotti, C. and Galasso, I. 1998. Isozyme diversity, RFLP of the rDNA and phylogenetic affinities among cultivated Lima beans, Phaseolus lunatus (Fabaceae). Plant Syst. Evol. 213: 153–164.Google Scholar
  31. Lioi, L., Sparvoli, F. and Bollini, R. 1999. Variation and genomic polymorphism of lectin-related proteins in Lima bean (Phaseolus lunatus L.) seeds. Genet. Res. Crop Evol. 46: 175–182.Google Scholar
  32. Maquet, A., Zoro Bi, I., Delvaux, M., Wathelet, B. and Baudoin, J.P. 1997. Genetic structure of a Lima bean base collection using allozyme markers. Theor. Appl. Genet. 95: 980–991.Google Scholar
  33. Maquet, A., Vekemans, X. Z. and Baudoin, J.P. 1999. Phylogenetic study on wild allies of Lima bean, Phaseolus lunatus (Fabaceae), and implications on its origin. Plant Syst. Evol. 218: 43–54.Google Scholar
  34. Mirkov, T.E., Wahlstrom, J.M., Hagiwara, K., Finardi-Filho, F., Kjemtrup, S. and Chrispeels, M.J. 1994. Evolutionary relationships among proteins in the phytohemagglutinin-arcelin-α-amylase inhibitor family of the common bean and its relatives. Plant Mol. Biol. 26: 1103–1113.Google Scholar
  35. Murdock, L.L., Huesing, J.E., Nielsen, S.S., Pratt, R.C. and Shade, R.E. 1990. Biological effects of plant lectins on the cowpea weevil. Phytochemistry 29: 85–89.Google Scholar
  36. Nikodem, V. and Fresco, J.R. 1979. Protein fingerprinting by SDS-gel electrophoresis after partial fragmentation with CNBr. Anal. Biochem. 97: 382–386.Google Scholar
  37. Nodari, R. O., Tsai, S.M., Gilbertson, R.L. and Gepts, P. 1993. Towards an integrated linkage map of common bean. 2. Development of an RFLP-based linkage map. Theor. Appl. Genet. 85: 513–520.Google Scholar
  38. Osborn, T.C., Blake, T., Gepts, P. and Bliss, F.A. 1986. Bean arcelin. 2. Genetic variation, inheritance and linkage relationships of a novel seed protein of Phaseolus vulgaris L. Theor. Appl. Genet. 71: 847–855.Google Scholar
  39. Pueyo, J.J. and Delgado-Salinas, A. 1997. Presence of α-amylase inhibitor in some members of the subtribe Phaseolineae (Phaseoleae: Fabaceae). Am. J. Bot. 84: 79–84.Google Scholar
  40. Roberts, D.D., Etzler, M.E. and Goldstein, I.J. 1982. Subunit heterogeneity in the Lima bean lectin. J. Biol. Chem. 257: 9198–9204.Google Scholar
  41. Rougé, P., Barre, A., Causse, H., Chatelain, C. and Porthé, G. 1993. Arcelin and α-amylase inhibitor from seeds of common bean (Phaseolus vulgaris) are truncated lectins. Biochem. Syst. Ecol. 21: 695–703Google Scholar
  42. Saccone, C., Lanave, C., Pesole, G. and Preparata, G. 1990. Influence of base composition on quantitative estimates of gene evolution. Meth. Enzymol. 183: 570–583.Google Scholar
  43. Santino, A., Valsasina, B., Lioi, L. and Bollini, R. 1991. Bean (Phaseolus vulgaris L.) seed lectins: a novel electrophoretic variant of arcelin. Plant Physiol. (Life Sci. Adv.) 10: 7–11.Google Scholar
  44. Shade, R.E., Schroeder, H.E., Pueyo, J.J., Tabe, L.M., Murdock, L.L., Higgins, T.J. and Chrispeels, M.J. 1994. Transgenic pea seeds expressing the α-amylase inhibitor of the common bean are resistant to bruchid beetles. Bio/technology 12: 793–796.Google Scholar
  45. Sparvoli, F., Gallo, A., Marinelli, D., Santucci, A. and Bollini, R. 1998. Novel lectin-related proteins are major components in Lima bean (Phaseolus lunatus) seeds. Biochim. Biophys. Acta 1382: 311–323.Google Scholar
  46. Vitale, A. and Bollini, R. 1981. Genetic variability in charge microheterogeneity and polypeptide composition of phaseolin, the major storage protein of Phaseolus, and maps of its three major subunits. Physiol. Plant. 52: 96–100.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Francesca Sparvoli
    • 1
  • Cecilia Lanave
    • 2
  • Annalisa Santucci
    • 3
  • Roberto Bollini
    • 1
  • Lucia Lioi
    • 4
  1. 1.Istituto Biosintesi VegetaliMilanoItaly
  2. 2.CNRCentro di Studio Mitocondri e Metabolismo EnergeticoBariItaly
  3. 3.Dipartimento di Biologia MolecolareUniversità di SienaSienaItaly
  4. 4.CNRIstituto del GermoplasmaBariItaly

Personalised recommendations