Transport in Porous Media

, Volume 44, Issue 3, pp 539–557 | Cite as

A Direct Determination of the Transient Exchange Term of Fractured Media Using a Continuous Time Random Walk Method

  • B. Nœtinger
  • T. Estebenet
  • P. Landereau


In two recent papers, Nœtinger and Estébenet, 2000; Nœtinger et al., submitted, we set-up a method allowing to compute both the transient and steady-state exchange terms between the matrix and fractured regions of a naturally fractured porous medium using continuous time random walk methods (CTRW). The goal of the present paper is to show that a new version of the CTRW algorithm provides a direct determination of the so called transient exchange function f(t) (or its Laplace transform f(s)) widely used in well test interpretation. It is shown that this function is directly linked with the probability density of the first escape time in the fractured region of a Brownian particle launched initially in the matrix region. This new interpretation allows relating directly the exchange coefficient α with the mean escape time of brownian particles in the matrix. From a practical point of view, these new results allow to derive a simpler version of the CTRW method. In addition, we obtain a considerable speed up of the CTRW method for up-scaling fractured reservoirs.

up-scaling fractures dual-porosity transient exchange term random walks large scale averaging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arbogast, T., Douglas, J. and Hornung, U.: 1990, Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal. 21, 823-836.Google Scholar
  2. Barenblatt, G. I. and Zheltov, Yu. P.: 1960, Fundamental equations of homogeneous liquids in fissured rocks, Dokl. Akad. Nauk SSSR. 132, 545-548.Google Scholar
  3. Berkowitz, B. and Balberg, I.: 1993, Percolation theory and its application to grounwater hydrology Water Resour. Res. 29, 775-794.Google Scholar
  4. Bour, O. and Davy, P.: 1997, Connectivity of random fault networks following a power law fault length distribution, Water Resour. Res. 33, 1567-1583.Google Scholar
  5. Cacas, M. C., Ledoux, E., Marsily, G. de, Barbreau, A., Calmels, P., Gaillard, B. and Margritta, R.: 1990, Modeling fracture flow with a stochastic discrete network: calibration and validation, Water Resour. Res. 26, 491-500.Google Scholar
  6. Dautray, R. and Lions, J.-L.: 1995, Analyse mathematique et Calcul Numerique Pour Les Sciences et Les Techniques, Vol 2, Masson.Google Scholar
  7. Daviau, F.: 1986, Interprétation des essais de puits, les méthodes nouvelles, publications de l'institut français du pétrole, ed. Technip, Paris.Google Scholar
  8. Dershowitz, W. and Einstein H. H.: 1988, Characterizing rock joint geometry with joint system models, Rock Mech. Rock Engng 1, 21-51.Google Scholar
  9. Dershowitz W., Hurley N. and Been K.: 1992, Stochastic Discrete Fracture Modelling of Heterogeneous Fractured Reservoirs, Proceedings, Third European Conference on the Mathematics of Oil Recovery, Delft.Google Scholar
  10. Dershowitz W. and Miller, I.: 1995, Dual porosity fracture flow and transport, Geophys. Res. Letters 22, 1441-1444.Google Scholar
  11. Deruyck, B. Bourdet, D. Da Prat, G. and Ramey H. J. Jr.: 1982, Interpretation of Interference Tests in Reservoirs with Double Porosity Behavior; Theory and Field Examples, SPE 11025.Google Scholar
  12. Gerke, H. H. and VanGenuchten, M. T.: 1993, Evaluation of a first-order water transfer term for variably-saturated dual-porosity models, Water Resour. Res. 29, 1225-1238.Google Scholar
  13. Gilman, J. R.: 1986, An Efficient Finite-Difference Method for Simulating Phase Segregation in the Matrix Blocks in Double Porosity Reservoirs SPE Res. Eng. 403-413, July 1986.Google Scholar
  14. Hornung, U. and Showalter, R. E.: 1990, Diffusion Models for Fractured Media, J. of Math. Anal. and Appl. 147, 69-80.Google Scholar
  15. Huseby, O., Thovert, J. F., and Adler, P. M.: 1997, Geometry and Topology of Fracture Systems J. Phys. A: Math. Gen. 30, 1-30.Google Scholar
  16. Kazemi, H., Merril, L. S. Porterfield, K. L. and P. R. Zeman.; 1976, Numerical Simulation of Water-Oil Flow in Naturally Fractured Reservoirs, SPE J., 317.Google Scholar
  17. Landerau, P., Noetinger, B. and Quintard, M.: submitted for publication in Transport in Porous Media.Google Scholar
  18. Lim, K. T. and Aziz, K.: 1995, Matrix-fracture shape factors for dual-porosity simulators, J. Pet. Sci. Eng. 13, 169.Google Scholar
  19. Long, J. C. S., and Witherspoon, P. A.: 1985, The relationship of the degree of interconnection to permeability in fracture networks, J. Geophys. Res. 90, 2087-2098.Google Scholar
  20. Long, J. C. S, Gilmour, P. and Witherspoon, P. A.: 1985, A model for steady fluid flow in random three-dimensional network of disc-shaped fractures, Water Resour. Res. 21, 1105-1115.Google Scholar
  21. Mc Carthy, J. F.: 1993a, Reservoir Characterization: Efficient Random-Walk Methods for Upscaling and Image Selection, SPE 25334.Google Scholar
  22. Mc Carthy, J. F.: 1993b, Continuous-time random walks on random media, J. Phys. A: Math. Gen. 26, 2495-2503.Google Scholar
  23. Moyne, C.: 1997, Two-equation model for a diffusive process in porous media using the volume averaging method with an unsteady-state closure, Advances in Water Resour. 20, 63-76.Google Scholar
  24. Noetinger, B. and Estébenet, T.: 2000, Up scaling flow in fractured media using continuous-time random walks methods, Transport in Porous Media 39, 315-337.Google Scholar
  25. Noetinger, B., Estébenet, T. and Quintard, M.: Up scaling of fractured media: Equivalence between the large scale averaging theory and the continuous time random walk method, submitted in Transport in Porous Media.Google Scholar
  26. Odeh, A. S.: 1965, Unsteady-State Behavior of Naturally Fractured Reservoirs, SPE J., 60-66.Google Scholar
  27. Quintard, M. and Whitaker, S.: 1993, One-and two-equation models for transient diffusion processes in two-phase systems, Advances in Heat Transfer 23, 369-464.Google Scholar
  28. Quintard, M. and Whitaker, S.: 1996a, Transport in chemically and mechanically heterogeneous porous media I: Theoretical development of region averaged equations for slightly compressible single-phase flow, Advances in Water Resour. 19, 29-47.Google Scholar
  29. Quintard, M. and Whitaker, S.: 1996b, Transport in chemically and mechanically heterogeneous porous media II: Comparison with numerical experiments for slightly compressible single-phase flow, Advances in Water Resour. 19, 49-60.Google Scholar
  30. Sahimi, M.: 1995, Flow and Transport in Porous Media and Fractured Rocks, VCH.Google Scholar
  31. Showalter R. E.: 1991, Diffusion models with microstructure, Transport in Porous Media 6, 567-580.Google Scholar
  32. de Swann, A.: 1976, Analytic solutions for determining naturally fractured reservoir properties by well testing, SPE J., 117-122.Google Scholar
  33. Warren, J. E. and Root, P. J.: 1963, The behavior of naturally fractured reservoirs, The Soc. Petrol. Engs. J. 3, 245-255.Google Scholar
  34. Zimmerman, R. W. Chen, G. Hadgu, T. and Bodvarsonn G. S.: 1993, A numerical dual-porosity model with semianalytical treatment of fracture/matrix flow, Water Resour. Res. 29, 2127-2137.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • B. Nœtinger
    • 1
  • T. Estebenet
    • 1
  • P. Landereau
    • 1
  1. 1.Institut Français du Pétrole, HélioparcPauFrance

Personalised recommendations