Journal of Atmospheric Chemistry

, Volume 39, Issue 3, pp 219–233

Exchange of Short-Chain Oxygenated Volatile Organic Compounds (VOCs) between Plants and the Atmosphere: A Compilation of Field and Laboratory Studies

  • J. Kesselmeier


Field and laboratory investigations of the exchange of the short-chain organic acids – formic acid and acetic acid – as well as their homologous aldehydes are discussed. Both acids are substantially released from several plant species. Emission measurements under field conditions are compiled to give an overview of three years of measurements. Emission rates from several tree species were found in the range between zero and 60 nmoles m−2 min−1 for acetic acid and between zero and 90 nmoles m−2 min−1 for formic acid though also a deposition has been observed to orange trees. Investigations under laboratory conditions showed an order of magnitude lower emission rates with significant differences under light and dark conditions, and a deposition was observed under certain conditions. Hence, low emission rates or even a bi-directional exchange, emission as well as deposition have to be taken into account. Further differences between field and laboratory studies are discussed considering age of trees, stress effects and a potential production of acids by photochemical conversion of precursors inside enclosures during sampling. Field data on the exchange of form- and acetaldehyde show a complex behavior. We found emission as well as uptake. The bi-directional exchange is significantly triggered by the ambient mixing ratios of both aldehyde species and exhibits a compensation point. Further studies are needed for generalization of the exchange of these and potentially also for other compounds.

volatile organic compounds biogenic emission biogenic deposition compensation point organic acids formic acid acetic acid carbonyls acetaldehyde formaldehyde 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreae, M. O., Talbot, R. W., and Li S.-M., 1987: Atmospheric measurements of pyruvic and formic acid, J. Geophys. Res. 92 (D6), 6635-6641.Google Scholar
  2. Andreae, M. O. and Crutzen, P. J., 1997: Atmospheric aerosols. Biogeochemical sources and role in atmospheric chemistry, Science 276, 1052-1058.Google Scholar
  3. Atkinson, R., 1990: Gas-phase tropospheric chemistry of organic compounds: A Review, Atmos. Environ. 24A, 1-41.Google Scholar
  4. Benning, L. and Wahner, A., 1998: Measurements of atmospheric formaldehyde (HCHO) and acetaldehyde (CH3CHO) during POPCORN 1994 using 2.4-DNPH coated silica cartridges, J. Atmos. Chem. 31, 105-117.Google Scholar
  5. Bode, K., Schebeske, G., Weller, D., Wolf, A., and Kesselmeier, J., 1996: Emission of short chained (C1/C2) organic acids and aldehydes in relation to physiological activities of Mediterranean tree and shrub species during the BEMA field campaigns in 1995: In Biogenic Emissions in the Mediterranean Area, BEMA-Project, Report on the 2nd BEMA measuring campaign Montpellier-France-June 1995, EUR 16449 EN, Brussels, pp. 65-75.Google Scholar
  6. Chameides, W. L. and Davis, D. D., 1983: Aqueous phase source of formic acid in clouds, Nature 304, 427-429.Google Scholar
  7. De Gouw, J. A., Howard, C. J., Custer, T. G., and Fall, R., 1999: Emissions of volatile organic compounds from cut grass and clover are enhanced during the drying process, Geophys. Res. Lett. 26, 811-814.Google Scholar
  8. De Gouw, J. A., Howard, C. J., Custer, T. G., Baker, B. M., and Fall, R., 2000: Proton-transfer chemical-ionization mass spectrometry allows real-time analysis of volatile organic compounds released from cutting and drying of crops, Environ. Sci. Technol. 34, 2640-2648.Google Scholar
  9. Duce, R. A., Mohnen, V., Zimmerman, P. R., Grosjean, D., Cautreels, W., Chatfield, R., Jaenicke, R., Ogren, J. A., Pellizari, E. D., and Wallace, G. T., 1983: Organic material in the global troposphere, Rev. Geophys. Space Phys. 21, 921-952.Google Scholar
  10. Fall, R., Karl, T., Hansel, A., Jordan, A., and Lindinger, W., 1999: Volatile organic compounds emitted after leaf wounding: On-line analysis by proton-transfer-reaction mass spectrometry, J. Geophys. Res. 104 (D13), 15963-15974.Google Scholar
  11. Fehsenfeld, F., Calvert, J., Fall, R., Goldan, P., Guenther, A. B., Hewitt, C. N., Lamb, B., Liu, S., Trainer, M., Westberg, H., and Zimmerman, P., 1992: Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry, Global Biogeochem. Cycles 6, 389-430.Google Scholar
  12. Fukui, Y. and Doskey, P. V., 1998: Air-surface exchange of nonmethane organic compounds at a grassland site: Seasonal variations and stressed emissions, J. Geophys. Res. 103, 13153-13168.Google Scholar
  13. Gabriel, R., Schäfer, L., Gerlach, C., Rausch, T., and Kesselmeier, J., 1999: Factors controlling the emissions of volatile organic acids from leaves of Quercus ilex L. (Holm oak), Atmos. Environ. 33 (9), 1347-1355.Google Scholar
  14. Gabriel, R. and Kesselmeier, J., 1999: Apoplastic solute concentrations of organic acids and mineral nutrients in the leaves of several Fagaceae, Plant Cell Physiol. 40, 604-612.Google Scholar
  15. Glasius, M., Wessel, S., Christinsen, C. S., Jacobsen, J. K., Jorgensen, H. E., Klitgaard, K. C., Petersen, L., Rasmussen, J. K., Strouyer Hansen, T., Lohse, C., Boaretto, E., and Heinemeier, J., 2000: Sources to formic acid studied by carbon isotopic analysis and air mass characterization, Atmos. Environ. 34, 2471-2479.Google Scholar
  16. Guenther, A. B., Zimmermann, P. R., Harley, P. C., Monson, R. K., and Fall, R., 1993: Isoprene and monoterpene emission rate variability: Model evaluations and sensitivity analyses, J. Geophys. Res. 98, 12609-12617.Google Scholar
  17. Guenther, A. B., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmermann, P., 1995: A global model of natural volatile organic compound emissions, J. Geophys. Res. 100, 8873-8892.Google Scholar
  18. Hamiltonkemp, T. R., McCracken C. T., Loughrin, J. H., Andersen, R. A., Hildebrand, D. F., 1992: Effects of some natural volatile compounds on the pathogenic fungi Alternaria alternata and Botrytis cinerea, J. Chem. Ecol. 18, 1083-1091.Google Scholar
  19. Heiden, A. C., Hoffmann, T., Kahl, J., Kley, D., Klockow, D., Langebartels, C., Mehlhorn, H., Sandermann, H., Schraudner, M., Schuh, G., and Wildt, J., 1999: Emission of volatile signal and defense molecules from ozone-exposed plants, Ecol. Applic. 9, 1160-1167.Google Scholar
  20. Hofmann, U., Weller, D., Ammann, Ch., Jork, E., and Kesselmeier, J., 1997: Cryogenic trapping of atmospheric organic acids under laboratory and field conditions, Atmos. Environ. 31, 1275-1284.Google Scholar
  21. Holzinger, R., Sandoval-Soto, L., Rottenberger, S., Dindorf, T., Crutzen, P. J., and Kesselmeier, J., 2000: Emissions of volatile organic compounds from Quercus ilex L. measured by Proton Transfer Reaction Mass Spectrometry under different environmental conditions, J. Geophys. Res. 105, 20573-20579.Google Scholar
  22. Jacob, D. J., 1988: The chemistry of OH in remote clouds and its role in the production of formic and peroxymonosulfate, J. Geophys. Res. 91, 9807-9826.Google Scholar
  23. Jacob, D. J. and Wofsy, S. C., 1988: Photochemistry of biogenic emissions over the Amazon Forest, J. Geophys. Res. 93, 1477-1486.Google Scholar
  24. Keene, W. C. and Galloway, J. N., 1986: Considerations concerning sources for formic and acetic acids in the troposphere, J. Geophys. Res. 91, 14466-14474.Google Scholar
  25. Kesselmeier, J., Schäfer, L., Ciccioli, P., Brancaleoni, E., Cecinato, A., Frattoni, M., Foster, P., Jacob, V., Denis, J., Fugit, J. L., Dutaur, L., and Torres, L., 1996: Emission of monoterpenes and isoprene from a Mediterranean oak species Quercus ilex L. measured within the BEMA (Biogenic Emissions in the Mediterranean Area) project, Atmos. Environ. 30, 1841-1850.Google Scholar
  26. Kesselmeier, J., Bode, K., Hofmann, U., Müller, H., Schäfer, L., Wolf, A., Ciccioli, P., Brancaleoni, E., Cecinato, A., Frattoni, M., Foster, P., Ferrari, C., Jacob, V., Fugit, J. L., Dutaur, L., Simon, V., and Torres, L., 1997: Emission of short chained organic acids, aldehydes and monoterpenes from Quercus ilex L. and Pinus pinea L. in relation to physiological activities, carbon budget and emission algorithms, Atmos. Environ. 31 (SI), 119-134.Google Scholar
  27. Kesselmeier, J., Bode, K., Gerlach, C., and Jork, E.-M., 1998: Exchange of atmospheric formic and acetic acid with trees and crop plants under controlled chamber and purified air conditions, Atmos. Environ. 32 (10), 1765-1775.Google Scholar
  28. Kesselmeier, J. and Staudt, M., 1999: Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology, J. Atmos. Chem. 33, 23-88.Google Scholar
  29. Khare, P., Kumar, N., Kumari, K. M., and Srivastava S. S., 1999: Atmospheric formic and acetic acids, Rev. Geophys. 37, 227-248.Google Scholar
  30. Kimmerer, T. W. and Kozlowski, T. T., 1982: Ethylene, ethane, acetaldehyde, and ethanol production by plants under stress, Plant Physiol. 69, 840-847.Google Scholar
  31. Kimmerer, T. W. and MacDonald, R. C., 1987: Acetaldehyde and ethanol biosynthesis in leaves of plants, Plant Physiol. 84, 1204-1209.Google Scholar
  32. Kirstine, W., Galbally, I., Ye, Y., and Hooper, M., 1998: Emissions of volatile organic compounds (primarily oxygenated species) from pasture, J. Geophys. Res. 103 (D9), 10605-10619.Google Scholar
  33. König, G., Brunda, M., Puxbaum, H., Hewitt, C. N., Duckham, S. C., and Rudolph, J., 1995: Relative contribution of oxygenated hydrocarbons to the total biogenic VOC emissions of selected mid-European agricultural and natural plant species, Atmos. Environ. 29, 861-874.Google Scholar
  34. Kreuzwieser, J., Scheerer, U., and Rennenberg, H., 1999a: Metabolic origin of acetaldehyde emitted by poplar (Populus tremula x P-alba) trees, J. Experiment. Botany 50, 757-765.Google Scholar
  35. Kreuzwieser, J., Schnitzler, J. P., and Steinbrecher, R., 1999b: Biosynthesis of organic compounds emitted by plants, Plant Biol. 1, 149-159.Google Scholar
  36. Kuhn, U., Rottenberger, S., Biesenthal, T., Ammann, C., Meixner, F. X., Wolf, A., Schebeske, G., Telles de Oliva, P. S., Tavares, T., and Kesselmeier, J.: Exchange of short chained monocarboxyclic acids between biosphere and atmosphere at a remote tropical forest site in Amazonia, (submitted to J. Geophys. Res.).Google Scholar
  37. Limbeck, A. and Puxbaum, H., 1999: Organic acids in continental background aerosols, Atmos. Environ. 33, 1847-1852.Google Scholar
  38. Madronich, S., Chatfield, R. B., Calvert, J. G., Moortgat, G. K., Veyret, B., and Lesclaux, R., 1990: A photochemical origin of acetic acid in the troposphere, Geophys. Res. Lett. 17, 2361-2364.Google Scholar
  39. Neeb, P., Sauer, F., Horie, O., and Moortgat, G. K., 1997a: Formation of hydroxymethyl hydroperoxide and formic acid in alkene ozonolysis in the presence of water vapour, Atmos. Environ. 31, 1417-1423.Google Scholar
  40. Neeb, P., Bode, K., Beck. J., Schäfer, L., Kesselmeier, J., and Moortgat, G. K., 1997b: Influence of gas-phase oxidation on estimated emission rates of biogenic hydrocarbons: In Proceedings of the 7th European Symposium on Physico-Chemical Behaviour of Atmospheric Pollutants: The Oxidizing Capacity of the Troposphere, Office for Official Publications of the European Communities, Luxembourg (EUR 17482) ISBN 92-828-0158-6, pp. 295-299.Google Scholar
  41. Parusel, E., 1996: Zur Bedeutung der Pflanzen als Quelle leichter Nicht-Methan-Kohlenwasserstoffe für die Atmosphäre. Entwicklung einer Feldmeßmethode und Untersuchungen an Nutzpflanzen und Gehölzen. Sonderheft 167, Bundesforschungs-anstalt für Landwirtschaft, Braunschweig-Völkenrode.Google Scholar
  42. Sanhueza, E., Figueroa, L., and Santana, M., 1996: Atmospheric formic and acetic acids in Venezuela, Atmos. Environ. 30, 1861-1873.Google Scholar
  43. Sauer, F., Schäfer, C., Neeb, P., Horie, O., and Moortgat, G. K., 1999: Formation of hydrogen peroxide in the ozonolysis of isoprene and simple alkenes under humid conditions, Atmos. Environ. 33, 229-241.Google Scholar
  44. Schäfer, L., Gabriel, R., Müller, H., Wolf, A., and Kesselmeier, J., 1995: Emission of short chained organic acids and aldehydes in relation to physiological activities and apoplastic ion concentration in Mediterranean tree species during the B.E.M.A. field campaign in May 1994: In Biogenic Emissions in the Mediterranean Area, BEMA-Project, Report on the 1st BEMA measuring campaign at Castelporziano, Rome (Italy), May 1994, EUR 16293 EN, Brussels, pp. 233-247.Google Scholar
  45. Schäfer, L., 1997: Untersuchungen zur Abgabe von Ameisen-und Essigsäure sowie Form-und Acetaldehyd durch mediterrane Pflanzen an die Atmosphäre, Dissertation, Fachbereich Biologie, Universität Mainz.Google Scholar
  46. Simpson, D., Guenther, A., Hewitt, C. N., and Steinbrecher, R., 1995: Biogenic emissions in Europe. 1. Estimates and uncertainties, J. Geophys. Res. 100, 22875-22890.Google Scholar
  47. Staudt, M., Wolf, A., and Kesselmeier, J., 2000: Influence of environmental factors on the emissions of gaseous formic and acetic acids from orange (Citrus sinensis L.) foliage, Biogeochemistry 48, 199-216.Google Scholar
  48. Wedel, A., 1997: Bedeutung flüchtiger organischer Verbindungen aus landwirtschaftlich genutzten Pflanzen für die Chemie der Atmosphäre, Dissertation RWTH Aachen.Google Scholar
  49. Wilske, B. and Kesselmeier, J., 1999: The C1-andC2-organic acids and aldehydes exchange between boreal lichens and the atmosphere, Chem. Phys. Earth Part B 24 (6), 725-732.Google Scholar
  50. Yu, J. Z., Griffin, R. J., Cocker, D. R., Flagan, R. C., Seinfeld, J. H., and Blanchard, P., 1999: Observation of gaseous and particulate products of monoterpene oxidation in forest atmospheres, Geophys. Res. Lett. 26, 1145-1148.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • J. Kesselmeier
    • 1
  1. 1.Max-Planck-Institut für ChemieMainzGermany

Personalised recommendations