Climatic Change

, Volume 50, Issue 1–2, pp 77–109 | Cite as

Potential Impact of Climate Change on Vegetation in the European Alps: A Review

  • Jean-Paul Theurillat
  • Antoine Guisan
Article

Abstract

Based on conclusions drawn from general climatic impact assessmentin mountain regions, the review synthesizes results relevant to the European Alps published mainly from 1994 onward in the fields of population genetics, ecophysiology, phenology, phytogeography, modeling, paleoecology and vegetation dynamics. Other important factors of global change interacting synergistically with climatic factors are also mentioned, such as atmospheric CO2 concentration, eutrophication, ozone or changes in land-use. Topics addressed are general species distribution and populations (persistence, acclimation, genetic variability, dispersal, fragmentation, plant/animal interaction, species richness, conservation), potential response of vegetation (ecotonal shift – area, physiography – changes in the composition, structural changes), phenology, growth and productivity, and landscape. In conclusion, the European Alps appear to have a natural inertia and thus to tolerate an increase of 1–2 K of mean air temperature as far as plant species and ecosystems are concerned in general. However, the impact of land-use is very likely to negate this buffer in many areas. For a change of the order of 3 K or more, profound changes may be expected.

Keywords

Ozone Species Richness Genetic Variability Global Change Population Genetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aeschimann, D. and Guisan, A.: 1995, ‘Introduction to the Alps’, in Guisan, A., Holten, J. I., Spichiger, R., and Tessier, L. (eds.), Potential Ecological Impacts of Climate Change in the Alps and Fennoscandian Mountains,Conservatoire et Jardin Botaniques, Genève, pp. 81–85.Google Scholar
  2. Aeschimann, D. and Heitz, C.:1996. Index synonymique de la Flore de Suisse et territoires limitrophes, Centre du Réseau Suisse de Floristique, Genève, p.318.Google Scholar
  3. Ammer, C.: 1996, ‘Impact of Ungulates on Structure and Dynamics of Natural Regeneration of Mixed Mountain Forests in the Bavarian Alps, Forest Ecol. Manage. 88,43–53.Google Scholar
  4. Arnone III, J. A.: 1999, ‘Symbiotic N2 Fixation in a High Alpine Grassland: Effects of Four Growing Seasons of Elevated CO2’,Funct. Ecol. 13,383–387.Google Scholar
  5. Arnone III, J. A. and Bohlen, P. J.: 1998, ‘Stimulated N2O Flux from Intact GrasslandMonoliths after Two Growing Seasons under Elevated Atmospheric CO2, Oecologia (Berlin) 116, 3310–335.Google Scholar
  6. Arnone III, J. A. and Körner, C.: 1997, ‘Temperature Adaptation and Acclimation Potential of Leaf Dark Respiration in Two Species of Ranunculus from Warm and Cold Habitats’,Arct. Alp. Res. 29,122–125.Google Scholar
  7. Ashmore, M. R. and Marshall, F. M.: 1999, ‘Ozone Impacts on Agriculture: An Issue of Global Concern’, Adv. Botan. Res. 29,31–52.Google Scholar
  8. Badalotti, A., Anfodillo, T., and Grace, J.: 2000, ‘Evidence of Osmoregulation in Larix decidua at Alpine Treeline and Comparative Responses to Water Availability of Two Co-Occurring Evergreen Species’, Ann. Forest Sci. 57,623–633.Google Scholar
  9. Baltensweiler, W.: 1993, ‘Why the Larchbud-Moth Cycle Collapsed in the Subalpine Larch-Cembran Pine Forests in the Year 1990 for the First Time since 1850’,Oecologia (Berlin) 94,62–66.Google Scholar
  10. Baltensweiler, W. and Rubli, D.: 1999, ‘Dispersal: An Important Driving Force of the Cyclic Population Dynamics of the Larch Bud Moth, Zeiraphera Diniana Gn’, Forest, Snow Landscape Res. 74,3–153.Google Scholar
  11. Bauert, M. R.: 1994, ‘Voruntersuchung der genetischen Variabilität eiszeitlicher Reliktpopulationen von Saxifraga cernua’,Botanica Helvetica 104,215–220.Google Scholar
  12. Bauert, M. R., Kälin, M., Baltisberger, M., and Edwards, P. J.: 1998, ‘Non Genetic Variation Detected within Isolated Relict Populations of Saxifraga cernua in the Alps Using RAPDMarkers’,Molec. Ecol. 7, 1519–1527.Google Scholar
  13. Bazzaz, F. A.: 1996, Plants in Changing Environments: Linking Physiological, Population and Community Ecology, Cambridge University Press, Cambridge, p.320.Google Scholar
  14. Beniston, M. (ed.): 1994,Mountain Environment in Changing Climates, Routledge, London, p. 461.Google Scholar
  15. Beniston, M.: 1997, ‘Variations of Snow Depth and Duration in the Swiss Alps over the Last 50 Years: Links to Changes in Large-Scale Climatic Forcings’, Clim. Change 36, 281–300.Google Scholar
  16. Beniston, M., Diaz, H. F., and Bradley, R. S.: 1997, ‘Climatic Change at High Elevation Sites: An Overview’, Clim. Change 36,233–251.Google Scholar
  17. Beniston, M., Fox, D. G., Adhikary, S., Andresson, R., Guisan, A., Holten, J. I., Ines, J., Maitima, J., Price, M., Tessier, L. (lead authors) et al.: 1996, ‘The Impacts of Climate Change on Mountain Regions’, in Second Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Chapter 5, Cambridge University Press.Google Scholar
  18. Bergmann, F.: 1978, ‘The Allelic Distribution at an Acid Phosphatase Locus in Norway Spruce (Picea abies) along Similar Climatic Gradients’,Theor. Appl. Genet. 52,57–64.Google Scholar
  19. Bernhardt, K.-G.:1996, ‘Die Diasporenbank einer alpinen Pflanzengesellschaft’, Dissertationes Botanicae 258,295–304.Google Scholar
  20. Bert, G. D.: 1993, ‘Impacts of Ecological Factors, Climatic Stresses, and Pollution on Growth and Health of Silver Fir (Abies alba Mill.) in the Jura Mountains: An Ecological and Dendrochronological Study’, Acta Oecologica 14,229–246.Google Scholar
  21. Blumer, P. and Diemer, M.: 1996, ‘The Occurrence and Consequences of Grasshopper Herbivory in an Alpine Grassland, Swiss Central Alps’, Arct. Alp. Res. 28,435–440.Google Scholar
  22. Bortenschlager, S.: 1993, ‘Das höchst gelegene Moor der Ostalpen “Moor am Rofenberg” 2760 m’, Dissertationes Botanice 196,329–334.Google Scholar
  23. Brooks, P. D., Schmidt, S. K., and Williams, M. W.: 1997, ‘Winter Production of CO2 and N2O from Alpine Tundra: Environmental Controls and Relationship to Inter-System C and N Fluxes’, Oecologia (Berlin) 110,403–413.Google Scholar
  24. Brzeziecki, B., Kienast, F., and Wildi, O.: 1995, ‘Modelling Potential Impacts of Climate Change on the Spatial Distribution of Zonal Forest Communities in Switzerland’,J. Vegetation Sci. 6, 257–258.Google Scholar
  25. Bugmann, H.: 1999, ‘Anthropogene Klimaveränderung, Sukzessionsprozesse und forstwirtschaftliche Optionen’, Schweiz. Z. Forstwesen 150,275–287.Google Scholar
  26. Burga, C. A.: 1988, ‘Swiss Vegetation History during the Last 18 000 Years’,New Phytol. 110, 581–602.Google Scholar
  27. Burga, C. A.: 1991, ‘Vegetation History and Palaeoclimatology of the Middle Holocene: Pollen Analysis of Alpine Peat Bog Sediments, Covered Formerly by the Rutor Glacier, 2510 m (Aosta Valley, Italy)’, Global Ecol. Biogeogr. Lett. 1,143–150.Google Scholar
  28. Camarero, J. J., Guerrero-Campo, J., and Gutiérrez, E.: 1996, ‘Fenología del anillo de crecimiento de Pinus uncinata Ramond y Pinus sylvestris L. en un gradiente altitudinal en los Pirineos centrales’, Pirineos 147/148, 3–26.Google Scholar
  29. Camarero, J. J., Guerrero-Campo, J., and Gutiérrez, E.: 1998, ‘Tree-Ring Growth and Structure of Pinus uncinata and Pinus sylvestris in the Central Spanish Pyrenees’, Arct. Alp. Res. 30,1–10.Google Scholar
  30. Carcaillet, C. and Brun, J.-J.: 2000, ‘Changes in Landscape Structure in the Northwestern Alps over the Last 7000 Years: Lessons from Soil Charcoals’,J. Vegetat. Sci. 11,705–714.Google Scholar
  31. Carcaillet, C., Talon, B., and Thinon, M.: 1998, ‘Pinus cembra et incendies pendant l'Holocène, 300 m au-dessus de la limite actuelle des arbres dans le massif de la Vanoise (Alpes du nordouest)’, Ecologie 29,277–282.Google Scholar
  32. Carraro, G., Klötzli, K., Walther, G.-R., Gianoni, P., and Mossi, R.: 1999,Observed Changes in Vegetation in Relation to ClimateWarming, Final ReportNFP 31, VDG Hochschulverlag, Zürich, p.87.Google Scholar
  33. Cherubini, P. and Moretti, G. (eds.):1999,L'ozono nel bosco ticinese,WSL, Birmensdorf, p.20.Google Scholar
  34. Cherubini, P., Dobbertin, M., and Innes, J. L.: 1998, ‘Potential Sampling Bias in Long-Term Forest Growth Trends Reconstructed from Tree Rings: A Case Study from the Italian Alps’,Forest Ecol. Manage. 109,103–118.Google Scholar
  35. Cherubini, P., Dobbertin, M., and Innes, J. L.: 1999, ‘Erratum to “Potential Sampling Biais in Long-Term Forest Growth Trends Reconstructed from Tree Rings: A Case Study from the Italian Alps”’, Forest Ecol. Manage. 114,165–167.Google Scholar
  36. Chuine, I. and Cour, P.: 1999, ‘Climatic Determinants of Budburst Seasonality in Four Temperate-Zone Tree Species’,New Phytol. 143,339–349.Google Scholar
  37. Delarze, R.: 1994, ‘Dynamique de la végétation sur les pistes ensemencées de Crans-Montana (Valais, Suisse). Effets de l'altitude’,Botanica Helvetica 104,3–16.Google Scholar
  38. Desplanque, C., Rolland, C., and Schweingruber, F. H.: 1999, ‘Influence of Species and Abiotic Factors on Extreme Tree Ring Modulation: Picea abies and Abies alba in Tarentaise and Maurienne (French Alps)’, Trees: Structure Function 13,218–227.Google Scholar
  39. Di Castri, F. and Hansen, J. A.: 1992, ‘The Environment and Development Crises as Determinants of Landscape Dynamics’, in Hansen, A. J. and di Castri, F. (eds.), Landscape Boundaries. Consequences for Biotic Diversity and Ecological Flows,Springer, Heidelberg, pp.3–18.Google Scholar
  40. Diekmann, M.: 1996, ‘Relationship between Flowering Phenology of Perennial Herbs and Meteorological Data in Deciduous Forests of Sweden’,Can. J. Bot. 74,528–537.Google Scholar
  41. Diemer, M.: 1997, ‘Effects of Elevated CO2 on Gas Exchange Characteristics of Alpine Grassland’, Acta Oecologica 18, 177–182.Google Scholar
  42. Diemer, M. and Körner, C.: 1998, ‘Transient Enhancement of Carbon Uptake in an Alpine Grassland Ecosystem under Elevated CO2’, Arct. Alp. Res. 30,381–387.Google Scholar
  43. Diemer, M. and Prock, S.: 1993, ‘Estimates of Alpine Seed Bank Size in Two Central European and One Scandinavian Subarctic Plant Communities’, Arct. Alp. Res. 25, 194–200.Google Scholar
  44. Dullinger. S., Dirnböck, T., and Grabherr, G.: 2000, ‘Reconsidering Endemism in the North-Eastern Limestone Alps’, Acta Botanica Croatica 59,55–82.Google Scholar
  45. Eggenberg, S.: 1995, ‘Ein biogeographischer Vergleich von Waldgrenzen der nördlichen, inneren und südlichen Schweizeralpen’, Mitt. Naturf. Ges. Bern N. F. 52, 97–120.Google Scholar
  46. Egli, P. and Körner, C.: 1997, ‘Growth Responses to Elevated CO2 and Soil Quality in Beech-Spruce Model Ecosystems’,Acta Oecologica 18,343–349.Google Scholar
  47. Erhardt, A. and Rusterholz, H. P.: 1997, ‘Effects of Elevated CO2 on Flowering Phenology and Nectar Production’,Acta Oecologica 18,249–253.Google Scholar
  48. Erschbamer, B.: 1999, ‘Climate Warming and Plant Growth on Glacial Retreats’,Rev. Valdôtaine Hist. Nat. 51 (Suppl.), 219–224.Google Scholar
  49. Erschbamer, B., Niederfriniger Schlag, R., and Kneringer, E.: 1999, ‘Seed Dispersal, Seed Bank and Establishment of Seedlings on Glacial Retreats’,Rev. Valdôtaine Hist. Nat. 51 (Suppl.), 225–232.Google Scholar
  50. Escaravage, N., Questiau, S., Pornon, A., Doche, B., and Taberlet, P.: 1998, ‘Clonal Diversity in a Rhododendron ferrugineum L. (Ericaceae) Population Inferred from AFLP Markers’, Molec. Ecol. 7,975–982.Google Scholar
  51. Favarger, C. and Galland, N.:1996, ‘Essai sur la diversité de la flore alpienne’, Dissertationes Botanicae 258, 13–29.Google Scholar
  52. Felber, F., Zhao, G.-F., and Küpfer, P.: 1997, ‘Etude de la variabilité génétique de la flouve odorante (Anthoxanthum alpinum A. and D. Löve) et du mélèze (Larix decidua Miller) dans l'écocline subalpin-alpin’, Bull. Murith. Soc. Valais. Sci. Nat. 114,179–185.Google Scholar
  53. Fischlin, A. and Gyalistras, D.: 1997, ‘Assessing Impacts of Climatic Change on Forest in the Alps’, Global Ecol. Biogeogr. Lett. 6,19–37.Google Scholar
  54. Fischlin, A., Bugmann, H., and Gyalistras, D.: 1995, ‘Sensitivity of a Forest Ecosystem Model to Climate Parametrization Schemes’, Environ. Pollution 87,267–282.Google Scholar
  55. Fuhrer, J., Skärby, L., and Ashmore, M. R.: 1997, ‘Critical Levels for Ozone Effects on Vegetation in Europe’, Environ. Pollution 97,91–106.Google Scholar
  56. Gates, D. M.: 1993, Climate Change and Its Biological Consequences, Sinauer, Sunderland, p. 280.Google Scholar
  57. Gerdol, R., Bonora, A., Marchesini, R., Gualandri, R., and Pancaldi, S.: 1998, ‘Growth Response of Sphagnum capillifolium to Nighttime Temperature and Nutrient Level: Mechanisms and Implications for Global Change’, Arct. Alp. Res. 30, 388–395.Google Scholar
  58. Gianoni, G., Carraro, G., and Klötzli, F.: 1988. ‘Thermophile, an laurophyllen Pflanzenarten reiche Waldgesellschaften im hyperinsubrischen Seenbereich des Tessins’,Ber. Geobot. Inst. Stiftung Rübel 54, 164–180.Google Scholar
  59. Gigon, A.: 1999, ‘Agricultural Sustainability Does Not Imply Biocenotic Sustainability’, Appl. Veg. Sci. 2, 89–94.Google Scholar
  60. Gindl, W.: 1999, ‘Climatic Significance of Light Rings in Timberline Spruce, Picea abies, Austrian Alps’, Arct. Antarc. Alp. Res. 31,242–246.Google Scholar
  61. Gobet, E., Tinner, W., Hubschmid, P., Jansen, I., Wehrli, M., Ammann, B., and Wick, L.: 2000, ‘In-fluence of Human Impact and Bedrock Differences on the Vegetational History of the Insubrian Southern Alps’, Vegetat. Hist. Archeobotany 9, 175–187.Google Scholar
  62. Gottfried, M., Pauli, H., and Grabherr, G.: 1994, ‘Die Alpen im “Treibhaus”: Nachweis für das erwärmungsbedingte Höhersteigen der alpinen und nivalen Vegetation’, Jahrb. Vereins Schutz Bergwelt 59,13–27.Google Scholar
  63. Gottfried, M., Pauli, H., Reiter, K., and Grabherr G.: 1999, ‘A Fine-Scaled Predictive Model for Changes in Species Distribution Patterns of HighMountain Plants Induced by ClimateWarming’, Diversity Distributions 5,241–251.Google Scholar
  64. Grabherr, G.: 1997, ‘The High-Mountain Ecosystems of the Alps’, in Wielgolaski, F. E. (ed.), Polar and Alpine Tundra, Ecosystems of the World 3, Elsevier, Amsterdam, pp. 97–121.Google Scholar
  65. Grabherr, G., Gottfried, M., Gruber, A., and Pauli, H.: 2000, ‘Long-Term Monitoring of Mountain Peaks in the Alps’, in Burga, C. and Kratochwil, A. (eds.), Biomonitoring: General and Applied Aspects on Regional and Global Scales, Tasks for Vegetation Science 35,Kluwer Academic Publishers, Dordrecht, pp.153–177.Google Scholar
  66. Grabherr, G., Gottfried, M., and Pauli, H.: 1994, ‘Climate Effects on Mountain Plants’,Nature 369,448.Google Scholar
  67. Grabherr, G., Gottfried, M., and Pauli, H.: 1995, ‘Patterns and Current Changes in Alpine Plant Diversity’, in Chapin, F. S. III and Körner, C. (eds.), Arctic and Alpine Biodiversity: Patterns, Causes and Ecosystem Consequences, Springer, Heidelberg, pp.167–181.Google Scholar
  68. Grime, J. P.: 1993, ‘Vegetation Functional Classification Systems as Approaches to Predicting and Quantifying Global Vegetation Change’, in Solomon, A. M. and Shugart, H. H. (eds.), Vegetation Dynamics and Global Change, Chapman & Hall, London, pp. 293–305.Google Scholar
  69. Gugerli, F.: 1997a, ‘Sexual Reproduction in Saxifraga oppositifolia L. and Saxifraga biflora All. (Saxifragaceae) in the Alps’, Int. J. Plant Sci. 158,274–281.Google Scholar
  70. Gugerli, F.: 1997b, ‘Hybridization of Saxifraga oppositifolia and S. biflora (Saxifragaceae) in a Mixed Alpine Population’, Plant Systematic Evolution 207,255–272.Google Scholar
  71. Guisan, A. and Theurillat, J.-P.: 2000, ‘Equilibrium Modeling of Alpine Plant Distribution: How Far Can We Go?’, Phytocoenologia 30,353–384.Google Scholar
  72. Guisan, A., Holten, J. I., Spichiger, R., and Tessier, L. (eds.): 1995, Potential Ecological Impacts of Climate Change in the Alps and Fennoscandian Mountains,Conservatoire et Jardin botaniques, Genève, p. 194.Google Scholar
  73. Guisan, A., Theurillat, J.-P., and Kienast, F.: 1998, ‘Predicting the Potential Distribution of Plant Species in an Alpine Environment’, J. Veget. Sci. 9, 65–74.Google Scholar
  74. Haeberli, W. and Beniston, M.: 1998, ‘Climate Change and its Impacts on Glaciers and Permafrost in the Alps’, Ambio J. Human Environ. 27,258–265.Google Scholar
  75. Halpin, P. N.: 1994a, ‘GIS Analysis of the Potential Impacts of Climate Change on Mountain Ecosystems and Protected Areas’, in Price, M. F. and Heywood, D. I. (eds.), Mountain Environments and Geographic Information Systems, Taylor and Francis, London, pp. 281–301.Google Scholar
  76. Halpin, P. N.: 1994b, ‘Latitudinal Variation in the Potential Response of Mountain Ecosystems and Protected Areas’, in Beniston, M. (ed.), Mountain Environments in Changing Climates, Routledge, London, pp. 180–203.Google Scholar
  77. Hantke, R., Wagner, G., Schatz, W., and Seitter, H.: 2000, ‘Präglaziale Florenrelikte im Rigi-und Brienzer Rothorn-Gebiet’,Vierteljahrsschr. Naturf. Ges. Zürich 145,65–85.Google Scholar
  78. Hatt, M.: 1991, ‘Samenvorrat von zwei alpinen Böden’,Ber. Geob. Inst. ETH Stiftung Rübel 57, 41–71.Google Scholar
  79. Hättenschwiler, S. and Körner, C.: 1995, ‘Responses to Recent Climate Warming of Pinus sylvestris and Pinus cembra within their Montane Transition Zone in the Swiss Alps’,J. Veget. Sci. 6, 357–368.Google Scholar
  80. Hättenschwiler, S. and Körner, C.: 1996, ‘Effects of Elevated CO2 and Increased Nitrogen Deposition on Photosynthesis and Growth of Understory Plants in Spruce Model Ecosystems’,Oecologia (Berlin) 106, 172–180.Google Scholar
  81. Hättenschwiler, S. and Körner, C.: 1997, ‘Biomass Allocation and Canopy Development in Spruce Model Ecosystems under Elevated CO2 and Increased N Deposition’,Oecologia (Berlin) 113, 104–114.Google Scholar
  82. Hirschel, G., Körner, C., and Arnone, J. A. III.: 1997, ‘Will Rising Atmospheric CO2 Affect Leaf Litter Quality and In Situ Decomposition Rates in Native Plant Communities?’,Oecologia (Berlin) 110,387–392.Google Scholar
  83. Hodkinson, I. D. and Bird, J.: 1998, ‘Host-Specific Insect Herbivores as Sensors of Climate Change in Arctic and Alpine Environment’,Arct. Alp. Res. 30,78–83.Google Scholar
  84. Holt, R. D.: 1990, ‘The Microevolutionary Consequences of Climate Changes’,Trends Ecol. Evol. 5,311–315.Google Scholar
  85. Holtmeier, F.-K.:1994a, ‘Ecological Aspects of Climatically Caused Timberline Fluctuations’, in Beniston, M. (ed.), Mountain Environments in Changing Climates, Routledge, London, pp. 220–233.Google Scholar
  86. Holtmeier, F.-K.: 1994b, ‘Introduction to the Upper Engadine and its Forest’, in Schmidt, W. C. and Holtmeier, F.-K (eds.), International Workshop on Subalpine Stone Pines and their Environment: The Status of our Knowledge,U.S. Department of Agriculture, Forest Service, Intermountain Research Station, pp. 9–17.Google Scholar
  87. Houghton, J. T., Callander, B. A., and Varney, S. K.: 1992, Climate Change 1992. The Supplementary Report to the IPCC Scientific Assessment,Cambridge University Press, Cambridge, p.200.Google Scholar
  88. Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A., and Maskell, K. (eds.): 1996, Climate Change 1995. The Science of Climate Change,Cambridge University Press, Cambridge, p.572.Google Scholar
  89. Huntley, B.: 1991, ‘How Plants Respond to Climate Change: Migration Rates, Individualism and the Consequences for Plant Communities’, Ann. Botany 67(Suppl. 1), 15–22.Google Scholar
  90. Hussendörfer, E.: 1997, ‘Untersuchungen über die genetische Variation der Weisstanne (Abies alba Mill.) unter dem Aspekt der in situ Erhaltung genetischer Ressourcen in der Schweiz’, Beih. Z. Schweiz. Forstvereins 83,1–151.Google Scholar
  91. Hussendörfer, E. and Müller-Starck, G.: 1994, ‘Genetische Inventuren in Beständen der Weisstanne (Abies alba Mill.) – Aspekte der nacheiszeitlichen Wanderungsgeschichte’,Schweiz. Z. Forstwesen 145, 1021–1029.Google Scholar
  92. Keller, T., Edouard, J-L., Guibal, F., Guiot, J., Tessier, L., and Vila, B.:2000, ‘Impact d'un scénario climatique de réchauffement global sur la croissance des arbres’, Compt. Rend. Acad. Sci. Paris, Sér. 3, Sci. Vie 323,913–924.Google Scholar
  93. Keller, T., Guiot, J., and Tessier, L.: 1997, ‘Climatic Effect of Atmospheric CO2 Doubling on Radial Tree Growth in South Eastern France’,J. Biogeogr. 24,857–864.Google Scholar
  94. Kéry, M., Matthies, D., and Spillmann, H.-H.: 2000, ‘Reduced Fecundity and Offspring Performance in Small Populations of the Declining Grassland Plants Primula veris and Gentiana lutea’,J. Ecol. 88, 17–30.Google Scholar
  95. Kienast, F., Brzeziecki, B., and Wildi, O.: 1995, ‘Simulierte Auswirkungen von postulierten Klimaveränderungen auf die Waldvegetation im Alpenraum’,Angewandte Landschaftsökologie 4,83–101.Google Scholar
  96. Kienast, F., Brzeziecki, B., and Wildi, O.: 1996, ‘Long-Term Adaptation Potential of Central European Mountain Forests to Climate Change: A GIS-Assisted Sensitivity Assessment’,Forest Ecol. Manage. 80,133–153.Google Scholar
  97. Kienast, F., Wildi, O., and Brzeziecki, B.: 1997, ‘Potential Impact of Climate Change on Species Richness in Mountain Forests – an Ecological Risk Assessment’,Biol. Conserv. 83,291–305.Google Scholar
  98. Kienast, F., Wildi, O., Brzeziecki, B., Zimmermann, N., and Lemm, R.: 1998, Klimaänderung und mögliche langfristige Auswirkungen auf die Vegetation der Schweiz, Schlussbericht NFP31, VDG Hochschulverlag, Zürich, p.71.Google Scholar
  99. Klötzli, F., Walther, G.-F., Carraro, G., and Grundmann, A.: 1996, ‘Anlaufender Biomwandel in Insubrien’,Verh. Ges. Ökol. 26, 537–550.Google Scholar
  100. Körner, C.: 1992, ‘Response of Alpine Vegetation to Global Climate Change’,Catena 22 (Suppl.), 85–96.Google Scholar
  101. Körner, C.: 1993, ‘CO2 Fertilization: The Great Uncertainty in Future Vegetation Development’, in Solomon, A. M. and Shugart, H. H. (eds.), Vegetation Dynamics and Global Change, Chapman & Hall, London, pp. 53–70.Google Scholar
  102. Körner, C.: 1994, ‘Impact of Atmospheric Changes on High Mountain Vegetation’, in Beniston, M. (ed.),Mountain Environments in Changing Climates, Routledge, London, pp. 155–166.Google Scholar
  103. Körner, C.:1995, ‘Impact of Atmospheric Changes on Alpine Vegetation: The Ecophysiological Perspective’, in Guisan, A., Holten, J. I., Spichiger, R., and Tessier, L. (eds.), Potential Ecological Impacts of Climate Change in the Alps and Fennoscandian Mountains, Conservatoire et Jardin botaniques, Genève, pp. 113–120.Google Scholar
  104. Körner, C.: 1996, ‘The Response of Complex Multispecies Systems to Elevated CO2’, in Walker, B. H. and Steffen, W. (eds.),Global Change and Terrestrial Ecosystems,Cambridge University Press, Cambridge, pp. 20–42.Google Scholar
  105. Körner, C.: 1998, ‘A Re-Assessment of High Elevation Treeline Positions and their Explanation’, Oecologia (Berlin) 115,445–459.Google Scholar
  106. Körner, C.: 1999,Alpine Plant Life,Springer, Heidelberg, p.338.Google Scholar
  107. Körner, C., Diemer, M., Schäppi, B., Niklaus, P., and Arnone III, J. A.: 1997, ‘The Responses of Alpine Grassland to Four Seasons of CO2 Enrichment: A Synthesis’, Acta Oecologica 18,165–175.Google Scholar
  108. Körner, C., Diemer, M., Schäppi, B., and Zimmermann, L.: 1996, ‘Response of Alpine Vegetation to Elevated CO2’, in Koch, G. W. and Mooney, H. A. (eds.), Carbon Dioxide and Terrestrial Ecosystems, Academic Press, New York, pp. 177–196.Google Scholar
  109. Kronfuss, H.: 1994, ‘Height Growth in Cembran Pine as a Factor of Air Temperature’, in Schmidt, W. C. and Holtmeier, F.-K (eds.), International Workshop on Subalpine Stone Pines and their Environment: The Status of our Knowledge, U.S. Department of Agriculture, Forest Service, Intermountain Research Station, pp. 99–104.Google Scholar
  110. Kronfuss, H. and Havranek, W. M.: 1999, ‘Effects of Elevation and Wind on the Growth of Pinus cembra L. in a Subalpine Afforestation’, Phyton. Annales Rei Botanicae 39,99–106.Google Scholar
  111. Küpfer, P.: 1974, ‘Recherches sur les liens de parenté entre la flore des Alpes et celle des Pyrénées’, Boissiera 23,1–322.Google Scholar
  112. Küster, H.: 1990, ‘Gedanken zur Entstehung von Waldtypen in Süddeutschland’,Ber. Reinhold-Tüxen-Ges. 2,25–43.Google Scholar
  113. Küster, H.: 1994, ‘The Economic Use of Abies Wood as Timber in Central Europe during Roman Times’, Veget. Hist. Archeobotany 3,25–32.Google Scholar
  114. Lang, G.: 1993, ‘Holozäne Veränderungen der Waldgrenze in der Schweizer Alpen – Methodische Ansätze und gegenwärtiger Kenntnisstand’, Dissertationes Botanicae 196,317–327.Google Scholar
  115. Larigauderie, A. and Körner, C.: 1995, ‘Acclimation of Leaf Dark Respiration to Temperature in Alpine and Lowland Plant Species’,Ann. Botany 76, 245–252.Google Scholar
  116. Lauber, W. and Körner, C.: 1997, ‘In Situ Stomatal Responses to Long-Term CO2 Enrichment in Calcareous Grassland Plants’, Acta Oecologica 18,221–229.Google Scholar
  117. Leadley, P. W. and Körner, C.: 1996, ‘Effects of Elevated CO2 on Plant Species Dominance in a Highly Diverse Calcareous Grassland’, in Körner, C. and Bazzaz, F. A. (eds.), Carbon Dioxide, Populations, and Communities,Academic Press, London, pp. 159–175.Google Scholar
  118. Leadley, P. W., Niklaus, P. A., Stocker, R., and Körner, C.: 1999, ‘A Field Study of the Effects of Elevated CO2 on Plant Biomass and Community Structure in a Calcareous Grassland’,Oecologia (Berlin) 118, 39–49.Google Scholar
  119. Ledergerber, S., Leadley, P. W., Stöcklin, J., and Baur, B.: 1998, ‘Feeding Behaviour of Juvenile Snails (Helix pomatia) to Four Plant Species Grown at Elevated Atmospheric CO2’, Acta Oecologica 19, 89–95.Google Scholar
  120. Ledergerber, S., Thommen, H., and Baur, B.: 1997, ‘Grazing Damage to Plants and Gastropod and Grasshopper Densities in a CO2-Enrichment Experiment on Calcareous Grassland’, Acta Oecologica 18, 255–261.Google Scholar
  121. Lingg, W. A.: 1986, ‘Ökologie der inneralpinenWeisstannenvorkommen (Abies albaMill.) imWallis (CH)’, Mitt. Schweiz. Anst. Forstl. Versuchswesen 62, 331–466.Google Scholar
  122. Lischke, H., Guisan, A., Fischlin, A., and Bugmann, H.: 1998, ‘Vegetation Response to Climate Change in the Alps: Modeling Studies’, in Cebon, P., Dahinden, U., Davies, H. C., Imboden, D., and Jaeger, C. C. (eds.), Views from the Alps: Regional Perspectives on Climate Change,MIT Press, Cambridge, MA, pp. 309–350.Google Scholar
  123. Loehle, C.: 1998, ‘Height Growth Rate Tradeoffs Determine Northern and Southern Range Limits for Trees’, J. Biogeogr. 25, 735–742.Google Scholar
  124. Lüscher, A. and Nösberger, J.: 1997, ‘Interspecific and Intraspecific Variability in the Response of Grasses and Legumes to Free Air CO2 Enrichment’, Acta Oecologica 18, 269–275.Google Scholar
  125. Lüscher, A., Hendrey, G. R., and Nösberger, J.: 1997, ‘Long-Term Responsiveness to Free Air CO2 Enrichment of Functional Types, Species and Genotypes of Plants from Fertile Permanent Grassland’,Oecologia (Berlin) 113,37–45.Google Scholar
  126. Marchisio, C., Cescatti, A., and Battisti, A.: 1994, ‘Climate, Soils and Cephalcia arvensis Outbreaks on Picea abies in the Italian Alps’,Forest Ecol. Manage. 68,375–384.Google Scholar
  127. Markham, A., Dudley, N., and Stolton, S.: 1993. Some Like It Hot, World Wide Fund International, Gland, Switzerland, p.144.Google Scholar
  128. Matson, P. A., Parton, W. J., Power, A. G., and Swift, M. J.: 1997, ‘Agricultural Intensification and Ecosystem Properties’,Science 277,504–509.Google Scholar
  129. Maurer, S., Egli, P., Spinnler, D., and Körner, C.: 1999, ‘Carbon and Water Fluxes in Beech–Spruce Model Ecosystems in Response to Long-Term Exposure to Atmospheric CO2 Enrichment and Increased Nitrogen’, Func. Ecol. 13, 748–755.Google Scholar
  130. Merxmüller, H.: 1952, Untersuchungen zur Sippengliederung und Arealbildung in den Alpen,Verein zum Schutze der Alpenpflanzen und-Tiere, München, p.105.Google Scholar
  131. Molau, U.: 1993, ‘Relationships between Flowering Phenology and Life History Strategies in Tundra Plants’, Arct. Alp. Res. 24,391–402.Google Scholar
  132. Molau, U.: 1996, ‘Phenology and Reproductive Succes in Arctic Plants: Susceptibility to Climate Change’, in Oechel, W. C., Callaghan, T., Gilmanov, T., Holten, J. I., Maxwell, B., Molau, U., and Sveinbjörnsson, B. (eds.), Global Change and Arctic Terrestrial Ecosystems, Ecological Studies124, Springer, Heidelberg, pp.153–170.Google Scholar
  133. Moore, D. M.: 1995, ‘Opening Time by Degrees’, Nature 375, 186–187.Google Scholar
  134. Motta, R.: 1996, ‘Impact of Wild Ungulates on Forest Regeneration and Tree Composition of Mountain Forests in the Western Italian Alps’, Forest Ecol. Manage. 88,93–98.Google Scholar
  135. Motta, R. and Masarin, F.: 1998, ‘Strutture e dinamiche forestali di popolamenti misti di pino cembro (Pinus cembra L.) e larice (Larix decidua Miller) in alta valle Varaita (Cuneo, Piemonte)’, Archivio Geobotanico 2, 123–132.Google Scholar
  136. Müller-Starck, G.: 1994, ‘Die Bedeutung der genetischen Variation für die Anpassung gegenüber Umweltstress’, Schweiz. Z. Forstwesen 145, 977–997.Google Scholar
  137. Müller-Starck, G., Konnert, M., and Hussendörfer, E.: 2000, ‘Empfehlungen zur genetisch nachhaltigen Waldbewirtschaftung – Beispiele aus dem Gebirgswald’, Forest, Snow, Landscape Res. 75, 29–50.Google Scholar
  138. Nakagawa, T., de Beaulieu, J-L., and Kitagawa, H.:2000, ‘Pollen-Derived History of Timber Exploitation from the Roman Period onwards in the Romanche Valley, Central French Alps’,Veget. Hist. Archeobotany 9,85–89.Google Scholar
  139. Neuner, G., Ambach, D., and Buchner, O.: 1999, ‘Readiness to Frost Harden during the Dehardening Period Measured In Situ in Leaves of Rhododendron ferrugineum L. at the Timberline’, Flora 194,289–296.Google Scholar
  140. Nicolussi, K., Bortenschlager, S., and Körner, C.: 1995, ‘Increase in Tree-Ring Width in Subalpine Pinus cembra from the Central Alps that May Be CO2-Related’, Trees: Structure Function 9, 181–189.Google Scholar
  141. Niklaus, P. A.: 1998, ‘Effects of Elevated Atmospheric CO2 on Soil Microbiota in Calcareous Grassland’, Global Change Biol. 4, 451–458.Google Scholar
  142. Niklaus, P., Leadley, P. W., Stöcklin, J., and Körner, C.: 1998a, ‘Nutrient Relations in Calcareous Grassland under Elevated CO2’,Oecologia (Berlin) 116,67–75.Google Scholar
  143. Niklaus, P. A., Spinnler, D., and Körner, C.: 1998b, ‘Soil Moisture Dynamics of Calcareous Grassland under Elevated CO2’, Oecologia (Berlin) 117,201–208.Google Scholar
  144. Niklfeld, H.: 1972, ‘Der niederösterreichische Alpenostrand – ein Glazial Refugium montaner Pflanzensippen’, Jahrb. Vereins Schutze Alpenpfl. Tiere 37,42–94.Google Scholar
  145. Noble, I. R. and Dirzo, R.: 1997, ‘Forests as Human-Dominated Ecosystems’,Science 277, 522–525.Google Scholar
  146. Ögren, E.: 1996, ‘Premature Dehardening in Vaccinium myrtillus during a Mild Winter: A Cause for Winter Dieback?’,Func. Ecol. 10,724–732.Google Scholar
  147. Oleksyn, J., Modrzynski, J., Tjoelker, M. G., Zytkowiak, R., Reich, P. B., and Karolewski, P.: 1998, ‘Growth and Physiology of Picea abies Populations from Elevational Transects: Common Garden Evidence for Altitudinal Ecotypes and Cold Adaptation’, Func. Ecol. 12,573–590.Google Scholar
  148. Ott, E., Frehner, M., Frey, H.-U., and Lüscher, P.: 1997, Gebirgsnadelwälder, Haupt, Bern, p.287.Google Scholar
  149. Overdieck, D.: 1996, ‘Effect of Increasing Temperature and CO2 Concentration on Growth of Sycamore Maple and European Beech’,Verh. Ges. Ökol. 25,123–132.Google Scholar
  150. Ozenda, P. and Borel, J.-L.: 1991, Les conséquences écologiques possibles des changements climatiques dans l'Arc alpin, Rapport FUTURALP 1, Centre International pour l'Environnement Alpin (ICALPE), Chambéry, p.49.Google Scholar
  151. Ozenda, P. and Borel, J.-L.: 1995, ‘Possible Response of Mountain Vegetation to a Global Climatic Change: The Case of the Western Alps’, in Guisan, A., Holten, J. I., Spichiger, R., and Tessier, L. (eds.), Potential Ecological Impacts of Climate Change in the Alps and Fennoscandian Mountains, Conservatoire et Jardin botaniques, Genève, pp. 137–144.Google Scholar
  152. Pache, G., Michalet, R., and Aimé, S.: 1996, ‘A Seasonal Application of the Gams (1932) Method, Modified Michalet (1991): The Example of the Distribution of Some Important Forest Species in the Alps’, Dissertationes Botanicae 258,31–54.Google Scholar
  153. Peters, R. L. and Darling, J. D. S.: 1985, ‘The Greenhouse Effect and Nature Reserves: Global Warming Could Diminish Biological Diversity by Causing Extinctions among Reserve Species’, Bioscience 35, 707–717.Google Scholar
  154. Peters, R. L. and Lovejoy, T. E.: 1992, Global Warming and Biological Diversity,Yale University Press, London, p. 386.Google Scholar
  155. Pils, G.: 1995, ‘Die Bedeutung des Konkurrenzfaktors bei der Stabilisierung historischer Arealgrenzen’, Linzer Biol. Beitr. 27,119–149.Google Scholar
  156. Pornon, A. and Doche, B.: 1994, ‘Dynamics and Functioning of Rhododendron ferrugineum Subalpine Heathlands (Northern Alps, France)’, in Beniston, M. (ed.), Mountain Environments in Changing Climates, Routledge, London, pp. 244–258.Google Scholar
  157. Pornon, A. and Escaravage, N.: 1999, ‘Genotypic Structure in Clonal Rhododendron ferrugineum L. (Ericaceae) Populations: Origin and Maintenance’, Plant Ecol. 141, 145–150.Google Scholar
  158. Pornon, A., Escaravage, N., Till-Bottraud, I., and Doche, B.: 1997, ‘Variation of Reproductive Traits in Rhododendron ferrugineum L. (Ericaceae) Populations along a Successional Gradient’,Plant Ecol. 130, 1–11.Google Scholar
  159. Poschlod, P., Kiefer, S., Tränkle, U., Fischer, S., and Bonn, S.: 1998, ‘Plant Species Richness in Calcareous Grasslands as Affected by Dispersability in Space and Time’, Appl. Veget. Sci. 1, 75–90.Google Scholar
  160. Prock, S., Mader, G., and Cernusca, A.: 1998, ‘Die Diasporenbank subalpiner Weideflächen in den Alpen und ihre Bedeutung für die Sukzession'Verh. Ges. Ökol. 28,241–248.Google Scholar
  161. Ravazzi, C.: 1999, ‘Distribuzione ed ecologia di due primule endemiche delle Prealpi calcaree meridionali,Primula glaucescens e P. spectabilis, e considerazioni sulla loro corogenesi’, Archivio Botanico e Biogeografico Italiano 3,125–148.Google Scholar
  162. Riedo, M., Grub, A., Rosset, M., and Fuhrer, J.: 1997a, ‘A Pasture Simulation Model for Dry Matter Production, and Fluxes of Carbon, Nitrogen, Water and Energy’,Ecol. Model. 105, 141–183.Google Scholar
  163. Riedo, M., Gyalistras, D., Fischlin, A., and Fuhrer, J.: 1998, ‘Using an Ecosystem Model Linked to GCM-Derived LocalWeather Scenarios to Analyze Effects of Climate Change and Elevated CO2 on Dry Matter Production and Partitioning, and Water Use in Temperate Managed Grasslands’, Global Change Biol. 4,101–111.Google Scholar
  164. Riedo, M., Gyalistras, D., Grub, A., Rosset, M., and Fuhrer, J.: 1997b, ‘Modelling Grassland Responses to Climate Change and Elevated CO2’,Acta Oecologica 18, 305–311.Google Scholar
  165. Rigling, A. and Cherubini, P.: 1999, ‘Wieso sterben die Waldföhren im “Telwald” bei Visp?’, Schweiz. Z. Forstwesen 150, 113–131.Google Scholar
  166. Rolland, C. and Schueller, J.:1996, ‘Dendroclimatologie du Pin à crochets (Pinus uncinata Mill. ex Mirb.) dans le Briançonnais et le Queyras en fonction des conditions stationnelles’,Schweiz. Z. Forstwesen 147, 351–363.Google Scholar
  167. Rolland, C. and Schueller, J. F.: 1995, ‘Relationships between Mountain Pine and Climate in the French Pyrenees (Font-Romeu) Studied Using the Radiodensitometrical Method’, Pirineos 143/144, 55–70.Google Scholar
  168. Rolland, C., Michalet, R., Desplanque, C., Petetin, A., and Aimé, S.: 1999, ‘Ecological Requirements of Abies alba in the French Alps Derived from Dendro-Ecological Analysis’,J. Veget. Sci. 10, 297–306.Google Scholar
  169. Rolland, C., Petitcolas, V., and Michalet, R.: 1998, ‘Changes in Radial Tree-Growth for Picea abies, Larix decidua, Pinus cembra and Pinus uncinata near the Alpine Timberline since 1750’, Trees: Structure Function 23,40–53.Google Scholar
  170. Rötzel, C., Leadley, P. W., and Körner, C.: 1997, ‘Non-Destructive Assessment of the Effects of Elevated CO2 on Plant Community Structure in a Calcareous Grassland’, Acta Oecologica 18, 231–239.Google Scholar
  171. Rusterholz, H. P. and Erhardt, A.: 1998, ‘Effects of Elevated CO2 on Flowering Phenology and Nectar Production of Nectar Plants Important for Butterflies of Calcareous Grasslands’, Oecologia (Berlin) 113,341–349.Google Scholar
  172. Schäppi, B.: 1996, ‘Growth Dynamics and Population Development in an Alpine Grassland under Elevated CO2, Oecologia (Berlin) 106,93–99.Google Scholar
  173. Schäppi, B. and Körner, C.: 1996, ‘Growth Responses of an Alpine Grassland to Elevated CO2’, Oecologia (Berlin) 105,43–52.Google Scholar
  174. Scharfetter, R.: 1938, Das Pflanzenleben der Ostalpen,Deuticke, Wien, p.419.Google Scholar
  175. Schläpfer, M., Zoller, H., and Körner, C.: 1998, ‘Influences of Mowing and Grazing on Plant Species Composition in Calcareous Grassland’, Botanica Helvetica 108,57–67.Google Scholar
  176. Schlüssel, A.: 1999, Phénologie, diversité et structure de la végétation dans l'écocline subalpinalpin, Thèse, Département de botanique et de biologie végétale de l'Université, Genève, p.180.Google Scholar
  177. Schlüssel, A. and Theurillat, J.-P.: 1996, ‘Synusial Structure of Heathlands at the Subalpine/Alpine Ecocline in Valais (Switzerland)’, Rev. Suisse Zool. 163, 795–800.Google Scholar
  178. Schlüssel, A., Theurillat, J.-P., and Wiget, L.: 2000, ‘Temperature, Frost, Insolation, Snow, and the Phenology of Rhododendron ferrugineum L. (Ericaceae)’,Phytocoenologia 30, 457–468.Google Scholar
  179. Schneebeli, M., Laternser, M., and Ammann, W.: 1997, ‘Destructive Snow Avalanches and Climate Change in the Swiss Alps’,Eclog. Geol. Helv. 90,457–461.Google Scholar
  180. Schröter, C.: 1923–1926, Das Pflanzenleben der Alpen, Raustein, Zürich, p. 1288.Google Scholar
  181. Senn, J., Schönenberger, W., and Wasem, U.: 1994, ‘Survival and Growth of Planted Cembran Pines at the Alpine Timberline’, in Schmidt, W. C. and Holtmeier, F.-K (eds.), International Workshop on Subalpine Stone Pines and their Environment: The Status of our Knowledge, U.S. Department of Agriculture, Forest Service, Intermountain Research Station, pp. 105–109.Google Scholar
  182. Sevruk, B.: 1997, ‘Regional Dependency of Precipitation-Altitude Relationship in the Swiss Alps’, Clim. Change 36,355–369.Google Scholar
  183. Sevruk, B.: 1998, ‘The Geography and Topography Effects on the Areal Pattern of Precipitation in a Small Prealpine Basin’, Water Sci. Tech. 37, 163–170.Google Scholar
  184. Sholes, O. D. V.: 1994, ‘Plant Survival’, Nature 371,661.Google Scholar
  185. Siniscalco, C., Barni, E., Rosa, A., and Montacchini, F.: 1999, ‘Vegetation Dynamics after Seeding in Susa Valley Ski Runs (W-Italian Alps)’, Rev. Valdôtaine Hist. Nat. 51 (Suppl.), 343–356.Google Scholar
  186. Sommaruga, R., Psenner, R., Schafferer, E., Koinig, K. A., and Sommaruga-Wögrath, S.: 1999, ‘Dissolved Organic Carbon Concentration and Phytoplankton Biomass in High-Mountain Lakes of the Austrian Alps: Potential Effect of Climatic Warming on UV Underwater Attenuation’, Arct. Antarc. Alp. Res. 31, 247–253.Google Scholar
  187. Sommaruga-Wögrath, S., Koinig, K. A., Schmidt, R., Sommaruga, R., Tessadri, R., and Psenner, R.: 1997, ‘Temperature Effects on the Acidity of Remote Alpine Lakes’,Nature 387, 64–67.Google Scholar
  188. Stampfli, A. and Zeiter, M.: 1999, ‘Plant Species Decline Due to Abandonment of Meadows Cannot Easily Be Reversed by Mowing. A Case Study from the Southern Alps’,J. Veget. Sci. 10, 151–164.Google Scholar
  189. Stehlik, I.:2000, ‘Nunataks and Peripheral Refugia for Alpine Plants during Quaternary Glaciation in the Middle Part of the Alps’,Botanica Helvetica 110,25–30.Google Scholar
  190. Stehlik, I., Holderegger, R., Schneller, J. J., Abbott, R. J., and Bachmann, K.: 2000, ‘Molecular Biogeography and Population Genetics of Alpine Plant Species’,Bull. Geob. Inst. ETH 66,47–59.Google Scholar
  191. Steinger, T., Körner, C., and Schmid, B.: 1996, ‘Long-Term Persistence in a Changing Climate: DNA Analysis Suggest Very Old Ages of Clones of Alpine Carex curvula,Oecologia (Berlin) 105,94–99.Google Scholar
  192. Steinger, T., Lavigne, C., Birrer, A., Groppe, K., and Schmid, B.: 1997, ‘Genetic Variation in Response to Elevated CO2 in Three Grassland Perennials – a Field Experiment with Two Competition Regimes’, Acta Oecologica 18,263–268.Google Scholar
  193. Stocker, R., Leadley, P. W., and Körner, C.: 1997, ‘Carbon and Water Fluxes in a Calcareous Grassland under Elevated CO2’,Func. Ecol. 11,222–230.Google Scholar
  194. Stöcklin, J. and Bäumler, E.: 1996, ‘Seed Rain, Seedling Establishment and Clonal Growth Strategies on a Glacier Foreland’, J. Veget. Sci. 7,45–56.Google Scholar
  195. Stöcklin, J. and Körner, C.: 1999, ‘Interactive Effects of Elevated CO2, P Availability and Legume Presence on Calcareous Grasslands: Results of a Glasshouse Experiment’, Func. Ecol. 13, 200–209.Google Scholar
  196. Stöcklin, J., Leadley, P. W., and Körner, C.: 1997, ‘Community and Species Level Responses to Elevated CO2 in Designed Calcareous Grassland Communities’, Acta Oecologica 18, 241–248.Google Scholar
  197. Stöcklin, J., Meier, V. G., and Ryf, M.: 1999, ‘Populationsgrösse und Gefährdung von Magerwiesen-Pflanzen im Nordwestschweizer Jura’, Bauhinia 13,61–68.Google Scholar
  198. Stöcklin, J., Schweizer, K., and Körner, C.:1998, ‘Effects of Elevated CO2 and Phosphorous Addition on Productivity and Community Composition of Intact Monoliths from Calcareous Grasslands’,Oecologia (Berlin) 116,50–56.Google Scholar
  199. Studer-Ehrensberger, K.: 1995, ‘Geschichte und Naturschutz von artenreichen Kulturwiesen in der Schweiz: Eine Zusammenschau’,Botanica Helvetica 105,49–68.Google Scholar
  200. Stützer, A.: 1999, ‘Im permanenten Ñberlebenskampf: Bäume über der Waldgrenze’, Carinthia II. 109, 353–360.Google Scholar
  201. Tallis, J. H.: 1991, Plant Community History,Chapman & Hall, London, p.398.Google Scholar
  202. Talon, B.: 1997, Evolution des zones supra-forestières des Alpes sud-occidentales françaises au cours de l'Holocène. Analyse pédoanthracologique,Thèse, Faculté des Sciences et Technique de Saint-Jérôme, Université d'Aix-Marseille III, France, p. 398.Google Scholar
  203. Tegart, W. J. McG., Sheldon, G. W., and Griffiths, D. C.: 1990, Climate Change. The IPCC Impacts Assessment, Australian Government Publication Service, Canberra, p.278.Google Scholar
  204. Tessier, L., Guiot, J., Belingard, C., Edouard, J. L., and Keller, T.: 1995, ‘Dendrochronology of Climatic Change in Mountain Environment’, in Guisan, A., Holten, J. I., Spichiger, R., and Tessier, L. (eds.), Potential Ecological Impacts of Climate Change in the Alps and Fennoscandian Mountains,Conservatoire et Jardin botaniques, Genève, pp.149–157.Google Scholar
  205. Theurillat, J.-P.: 1995, ‘Climate Change and the Alpine Flora: Some Perspectives’, in Guisan, A., Holten, J. I., Spichiger, R., and Tessier, L. (eds.), Potential Ecological Impacts of Climate Change in the Alps and Fennoscandian Mountains,Conservatoire et Jardin botaniques, Genève, pp. 121–127.Google Scholar
  206. Theurillat, J.-P. and Schlüssel, A.: 2000, ‘Phenology and Distribution Strategy of Key Plant Species within the Subalpine-Alpine Ecocline in the Valaisan Alps (Switzerland)’,Phytocoenologia 30, 439–456.Google Scholar
  207. Theurillat, J.-P., Felber, F., Geissler, P., Gobat, J.-M., Fierz, M., Fischlin, A., Küpfer, P., Schlüssel, A., Velutti, C., and Zhao, G.-F.: 1998, ‘Sensitivity of Plant and Soils Ecosystems of the Alps to Climate Change’, in Cebon, P., Dahinden, U., Davies, H. C., Imboden, D., and Jaeger, C. C. (eds.), ‘Views from the Alps: Regional Perspectives on Climate Change’,MIT Press, Cambridge, MA, pp.225–308.Google Scholar
  208. Thinon, M. and Talon, B.: 1998, ‘Ampleur de l'anthropisation des étages supérieurs dans les Alpes du sud: données pédoanthracologiques’, Ecologie 29,323–328.Google Scholar
  209. Tinner, W., Amman, B., and German, P.: 1996, ‘Treeline Fluctuations Recorded for 12,500 Years by Soil Profiles, Pollen, and Plant Macrofossils in the Central Swiss Alps’, Arct. Alp. Res. 28, 131–147.Google Scholar
  210. Tinner, W., Conedera, M., Gobet, E., Hubschmid, P., Wehrli, M., and Ammann, B.: 2000, ‘A Palaeoecological Attempt to Classify Fire Sensitivity of Trees in the Southern Alps’,Holocene 10, 565–574.Google Scholar
  211. Tinner, W., Haubschmid, P., Wehrli, M., Ammann, B., and Conedera, M.: 1999, ‘Long-Term Forest Fire Ecology and Dynamics in Southern Switzerland’,J. Ecol. 87,273–289.Google Scholar
  212. Tolvanen, A.: 1997, ‘Recovery of the Bilberry (Vaccinium myrtillus L.) from Artificial Spring and Summer Frost’,Plant Ecol. 130,35–39.Google Scholar
  213. Urbanska, K. M.: 1995, ‘Biodiversity Assessment in Ecological Restoration above the Timberline’, Biodiv. Conserv. 4, 679–695.Google Scholar
  214. Urbanska, K. M. and Fattorini, M.: 1998a, ‘Seed Bank Studies in the Swiss Alps. I. Un-Restored Ski Run and the Adjacent Intact Grassland at High Elevation’,Botanica Helvetica 108, 93–104.Google Scholar
  215. Urbanska, K. M. and Fattorini, M.: 1998b, ‘Seed Bank Studies in the Swiss Alps. II. Restoration Plots on a High-Alpine Ski Run’,Botanica Helvetica 108, 289–301.Google Scholar
  216. Urbanska, K. M., Erdt, S., and Fattorini, M.: 1998, ‘Seed Rain in Natural Grassland and Adjacent Ski Run in the Swiss Alps: A Preliminary Report’,Restoration Ecol. 6,159–165.Google Scholar
  217. Urbanska, K. M., Fattorini, M., Thiele, K., and Pflugshaupt, K.: 1999, ‘Seed Rain on Alpine Ski Runs in Switzerland,Botanica Helvetica 109, 199–216.Google Scholar
  218. van der Knaap, W. O., van Leeuwen, J. F. N., Fankhauser, A., and Ammann, B.:2000, ‘Palynostratigraphy of the Last Centuries in Switzerland Based on 23 Lake and Mire Deposits: Chronostratigraphic Pollen Markers, Regional Patterns, and Local Histories’,Rev. Palaeobotany Palynol. 108,85–142.Google Scholar
  219. Volk, M., Niklaus, P. A., and Körner, C.: 2000, ‘Soil Moisture Effects Determine CO2 Responses of Grassland Species’,Oecologia (Berlin) 125,380–388.Google Scholar
  220. Wagner, J. and Reichegger, B.: 1997, ‘Phenology and Seed Development of the Alpine Sedges Carex curvula and Carex firma in Response to Contrasting Topoclimates’,Arct. Alp. Res. 29,291–299.Google Scholar
  221. Walther, G.-R.: 1999, ‘Distribution and Limits of Evergreen Broad-Leaved Plants in Switzerland’, Botanica Helvetica 109,153–167.Google Scholar
  222. Walther, G.-R.: 2000, ‘Climatic Forcing on the Dispersal of Exotic Species’,Phytocoenologia 30, 409–430.Google Scholar
  223. Walther, G.-R.: 2001, ‘Laurophyllisation – a Sign for a Changing Climate?’, in Burga, C. and Kratochwil, A. (eds.), Biomonitoring: General and Applied Aspects on Regional and Global Aspects, Tasks for Vegetation Science 35, Kluwer Academic Publishers, Dordrecht, pp.207–223.Google Scholar
  224. Weber, U. M.: 1999, ‘Auf den Spuren der Lärchenwickler – Was Jahrringe von Insekten und Klima erzählen’,Bauhinia 13,15–28.Google Scholar
  225. Wick, L. and Tinner, W.: 1997, ‘Vegetation Changes and Timberline Fluctuations in the Central Alps as Indicators of Holocene Climatic Oscillations’,Arct. Alp. Res. 29, 445–458.Google Scholar
  226. Williams, M. W., Brooks, P. D., and Seastedt, T.: 1998, ‘Nitrogen and Carbon Soil Dynamics in Response to Climate Change in a High-Elevation Ecosystem in the Rocky Mountains, U.S.A., Arct. Alp. Res. 30,26–30.Google Scholar
  227. Wohlgemuth, T.: 1998, ‘Modelling Floristic Species Richness on a Regional Scale: A Case Study in Switzerland’, Biodiv. Conserv. 7,159–177.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Jean-Paul Theurillat
    • 1
    • 2
  • Antoine Guisan
    • 3
  1. 1.Centre Alpien de Phytogéographie (CAP)ChampexSwitzerland
  2. 2.Université de GenèveCentre de BotaniqueChambésy
  3. 3.Swiss Center for Faunal Cartography (CSCF)NeuchâtelSwitzerland

Personalised recommendations