Plant Cell, Tissue and Organ Culture

, Volume 65, Issue 1, pp 37–44 | Cite as

Shoot regeneration capacity from roots and transgenic hairy roots of tomato cultivars and wild related species

  • Lázaro E. P. Peres
  • Patrícia G. Morgante
  • Cláudia Vecchi
  • Jane E. Kraus
  • Marie-Anne van Sluys


The organogenetic competence of roots and Agrobacterium rhizogenes-induced hairy roots of twelve Lycopersicon genotypes was investigated. Both roots and hairy roots of L. peruvianum, L. chilense, L. hirsutum and two L. peruvianum-derived genotypes regenerated shoots after 2–4 weeks of incubation on zeatin-contained medium. Anatomical analysis showed that shoot regeneration in roots could be direct or indirect, depending on the genotype considered. Hairy roots showed considerable differences in their morphogenetic responses, when compared to the corresponding non-transgenic roots. The differences observed may reflect the influence of the introduced rol genes on hormonal metabolism/sensitivity. Hairy root-derived T0 plants had shortened internodes, wrinkled leaves and abundant root initiation, and most produced flowers and fruits with viable seeds. The hairy root syndrome was detected early in germinating T1 seedlings as a strong reduction in the hypocotyl length. Our data point to the possibility of the use of A. rhizogenes, combined with regenerating Lycopersicon genotypes, in a very simple protocol, based on genetic capacity instead of special procedures for regeneration, to produce transgenic tomato plants expressing rol genes, as well as, genes present in binary vectors. Furthermore, the regeneration differences observed in each Lycopersicon genotype and in transgenic materials expressing rol genes open the possibility for their use in the analysis of both the biochemical and the genetic background of organogenetic competence.

Agrobacterium rhizogenes direct and indirect organogenesis Lycopersicon species rol genes transformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Daunay M-C, Lester RN & Laterrot H (1991) The use of wild species for the genetic improvement of brinjal egg-plant (Solanum melongena) and tomato (Lycopersicon esculentum). In: Hawkes J, Lester RN, Nee M & Estrada R (eds) Solanaceae III: taxonomy, chemistry, evolution (pp 389-412).The Royal Botanic Gardens Kew and Linnean Society of London, RichmondGoogle Scholar
  2. Delbarre A, Muller P, Imhoff V, Barbier-Brygoo H, Maurel C, Leblanc N, Perrot-Rechenmann C & Guern J (1994) The rolB gene of Agrobacterium rhizogenes does not increase the auxin sensitivity of tobacco protoplasts by modifying the intracellular auxin concentration. Plant Physiol. 105: 563-569PubMedGoogle Scholar
  3. Faiss M, Strnad M, Redig P, Dolezal K, Hanus J, Van Onckelen H & Schmülling T (1996) Chemically induced expression of the rolC-encoded beta-glucosidase in transgenic tobacco plants and analysis of cytokinin metabolism: rolC does not hydrolyze endogenous cytokinin glucosides in planta. Plant J. 10: 33-46CrossRefGoogle Scholar
  4. Faria RT & Illg RD (1996) Inheritance of in vitro plant regeneration ability in the tomato. Rev. Brasil. Genética 19: 113-116Google Scholar
  5. Fillati JJ, Kiser J, Rose R & Comai L (1987) Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefaciens vector. Biotechnology 5: 726-730CrossRefGoogle Scholar
  6. Frary A & Earle ED (1996) An examination of factors affecting the efficiency of Agrobacterium-mediated transformation of tomato. Plant Cell Rep. 16: 235-240Google Scholar
  7. Fulton TM, Chunwongse J & Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol. Biol. Rep. 13: 207-209Google Scholar
  8. Garcia-Reina G & Luque A (1988) Analysis of the organogenic potential of calli of three Canary Island Lycopersicon esculentum land races. Plant Cell Tiss. Org. Cult. 12: 279-283CrossRefGoogle Scholar
  9. Gaudin V, Vrain T & Jouanin L (1994) Bacterial genes modifying hormonal balances in plants. Plant Physiol. Biochem. 32: 11-29Google Scholar
  10. Hamza S & Chupeau Y (1993) Re-evaluation of conditions for plant regeneration and Agrobacterium-mediated transformation from tomato (Lycopersicon esculentum). J. Exp. Bot. 44: 1837-1845Google Scholar
  11. Hashimoto RY, Menck CFM & Van Sluys M-A (1999) Negative selection driven by cytosine deaminase gene in Lycopersicon esculentum hairy roots. Plant Sci. 141: 175-181CrossRefGoogle Scholar
  12. Koornneef M, Hanhart C, Jongsma M, Toma I, Weide R, Zabel P & Hille J (1986) Breeding of a tomato genotype readily accessible to genetic manipulation. Plant Sci. 45: 201-208CrossRefGoogle Scholar
  13. Koornneef M, Hanhart CJ & Martinelli L (1987) A genetic analysis of cell culture traits in tomato. Theor. Appl. Genet. 74: 633-641CrossRefGoogle Scholar
  14. Koornneef M, Bade J, Hanhart C, Horsman K, Schel J, Soppe W, Vekerk R & Zabel P (1993) Characterization and mapping of a gene controlling shoot regeneration in tomato. Plant J. 3: 131-141Google Scholar
  15. Kut SA & Evans DA (1982) Plant regeneration from cultured leaf explants of eight wild tomato species and two related Solanum species. In Vitro 18: 593-598Google Scholar
  16. Meredith CP (1979) Shoot development in established callus cultures of cultivated tomato (Lycopersicon esculentum Mill.). Z. Pflanzenphysiol. Bd. 95: 405-411Google Scholar
  17. Morgan A & Cocking EC (1982) Plant regeneration from protoplasts of Lycopersicon esculentum Mill. Z. Pflanzenphysiol. Bd. 106: 97-104Google Scholar
  18. Morgan AJ, Cox PN, Turner DA, Peel E, Davey MR, Gartland KMA & Mulligan BJ (1987) Transformation of tomato using an Ri plasmid vector. Plant Sci. 49:37-49CrossRefGoogle Scholar
  19. Moritz T & Schmülling T (1998) The gibberellin content of rolA transgenic tobacco plants is specifically altered. J. Plant Physiol. 153: 774-776Google Scholar
  20. Mullis KB & Fallona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 155: 335-350PubMedCrossRefGoogle Scholar
  21. Murashige T & Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15: 473-497CrossRefGoogle Scholar
  22. Norton JP & Boll WG (1954) Callus and shoot formation from tomato roots in vitro. Science 119: 220-221PubMedGoogle Scholar
  23. Peres LEP & Kerbauy GB (1999) High cytokinin accumulation following root tip excision changes the endogenous auxin-tocytokinin ratio during root-to-shoot conversion in Catasetum fimbriatum Lindl. (Orchidaceae). Plant Cell Rep. 18: 1002-1006CrossRefGoogle Scholar
  24. Petit A & Tempé J (1978) Isolation of Agrobacterium Ti-plasmid regulatory mutants, Mol. Gen. Genet. 167: 147-155CrossRefGoogle Scholar
  25. Sacks EJ, Gerhardt LM, Graham EB, Jacobs J, Thorrup TA & St Clair DA (1997) Variation among 41 genotypes of tomato (Lycopersicon esculentum Mill) for crossability to L. peruvianum (L.) Mill. Ann. Bot. 80: 469-477CrossRefGoogle Scholar
  26. Shahin EA, Sukhapinda K, Simpson RB & Spivey R (1986) Transformation of cultivated tomato by a binary vector in Agrobacterium rhizogenes: transgenic plants with normal phenotypes harbor binary vector T-DNA, but no Ri-plasmid T-DNA. Theor. Appl. Genet. 72: 770-777CrossRefGoogle Scholar
  27. Shen WH, Petit A, Guern J & Tempé J (1988) Hairy roots are more sensitive to auxin than normal roots. Proc. Nat. Acad. Sci. USA. 85: 3417-3421CrossRefGoogle Scholar
  28. Skoog F & Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol. 11: 118-231Google Scholar
  29. Smith RM, Marshall JA, Davey MR, Lowe KC & Power JB (1996) Comparison of volatiles and waxes in leaves of genetically engineered tomatoes. Phytochemistry 43: 753-758CrossRefGoogle Scholar
  30. Stommel JR & Sinden SL (1991) Genotypic differences in shootforming capacity of cultured leaf explants of Lycopersicon hirsutum. HortScience 26: 1317-1320Google Scholar
  31. Van Alvorst AC, Bino RJ, Van Dijk AJ, Lamers AMJ, Lindhout WH, Van der Mark F & Dons JJM (1992) Effects of the introduction of Agrobacterium rhizogenes rol genes on tomato plant and flower development. Plant Sci. 83: 77-85CrossRefGoogle Scholar
  32. Van Sluys M-A & Tempé J (1989) Behavior of the maize transposable element Activator in Daucus carota. Mol. Gen. Genet. 219: 313-319Google Scholar
  33. White PR (1934) Potentially unlimited growth of excised tomato root tips in a liquid medium. Plant Physiol. 9: 585-600PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Lázaro E. P. Peres
    • 1
  • Patrícia G. Morgante
    • 1
  • Cláudia Vecchi
    • 1
  • Jane E. Kraus
    • 1
  • Marie-Anne van Sluys
    • 1
  1. 1.Departamento de BotânicaUniversidade de São PauloSão Paulo, SPBrazil

Personalised recommendations