Transport in Porous Media

, Volume 43, Issue 1, pp 137–158

Salt Water Intrusion in a Three-dimensional Groundwater System in The Netherlands: A Numerical Study

  • Gualbert H.P. Oude Essink
Article

Abstract

Salt water intrusion is investigated in a coastal groundwater system in the northern part of the province Noord-Holland, The Netherlands. Density dependent groundwater flow is modeled in three-dimensions with MOCDENS3D. This computer code is a version of MOC3D (Konikow et al., 1996) that has been adapted to simulate transient density-driven groundwater flow. Results from the model suggests that in this Dutch hydrogeologic system a severe and irreversible salinisation is already occurring. Within a few tens to hundreds of years, the salinity of the shallow aquifer is estimated to increase substantially. This salinisation process is a result of human activities such as the reclamation of the low-lying areas during the past centuries. Without changing the present boundary conditions, seepage into the low-lying areas will decrease slightly because of predicted increases in groundwater salinity. However, the rate in salt load through the Holocene aquitard into the low-lying areas will increase significantly due to an increase in salinity in the shallow aquifer. In addition, a relative sea level rise of 0.5 m per century will intensify the salinisation process, causing an enormous increase in salt load in all low-lying areas in this part of The Netherlands.

salt water intrusion coastal aquifer sea level rise numerical modeling MOCDENS3D density-driven groundwater flow Noord-Holland The Netherlands. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bear, J. and Verruijt, A.: 1987, Modeling Groundwater Flow and Pollution, D. Reidel Publishing Company, Dordrecht, The Netherlands, 414 pp.Google Scholar
  2. Bear, J., Cheng, A., Sorek, S., Herrera, I. and Ouazar, D. (eds): 1999, Seawater Intrusion in Coastal Aquifers; Concept, Methods and Practices, Kluwer Academic Publishers, 625 pp.Google Scholar
  3. Beekman, H. E.: 1991, Ion chromatography of fresh-and seawater intrusion, multicomponent dispersive and diffusive transport in groundwater. PhD Thesis, Free University of Amsterdam, The Netherlands.Google Scholar
  4. Bobba, A.G.: 1999, Application of a numerical model to predict freshwater depth in islands due to climate change: Agatti Island, India, J. Environ. Hydr. 6.Google Scholar
  5. Harbaugh, A.W. and McDonald, M. G.: 1996, User's documentation for the U.S. Geological Survey modular finite-difference ground-water flow model, U.S. Geol. Surv. Open-File Rep. 96-485, 56 pp.Google Scholar
  6. Holzbecher, E.: 1998, Modeling Density-Driven Flow in Porous Media, Principles, Numerics, Software, Springer Verlag, Berlin Heidelberg, 286 pp.Google Scholar
  7. Daus, A. D., Frind, E. O. and Sudicky, E. A.: 1985, Comparative error analysis in finite element formulations of the advection-dispersion equation, Adv. Water Resour. 8, 86-95.Google Scholar
  8. Frind, E. O. and Pinder, G. F.: 1983, The principle direction technique for solution of the advectiondispersion equation, Proc. 10th IMACS World Congress on Systems Simulation and Scientific Computation, Concordia University, Montreal, Canada, Aug. 1982, pp. 305-313.Google Scholar
  9. Gelhar, L.W., Welty, C. and Rehfeldt, K. R.: 1992, A critical review of data on field-scale dispersion in aquifers, Water Resour. Res. 28, 1955-1974.Google Scholar
  10. ICW, Institute for Land and Water Management Research: 1982, Kwantiteit en kwaliteit van gronden oppervlaktewater in Noord-Holland benoorden het IJ, (in Dutch), Werkgroep Noord-Holland, ICW Regionale Studies 16, Wageningen, 166 pp.Google Scholar
  11. Jensen, O. K. and Finlayson, B. A.: 1978, Solution of the convection-diffusion equation using a moving coordinate system, Second Int. Conf. on Finite Elements in Water Resoures, Imperial College, London, pp. 4.21-4.32.Google Scholar
  12. Kinzelbach, W. K. H.: 1987, Numerische Methoden zur Modellierung des Transport von Schadstoffen im Grundwasser, (in German), Schriftenreihe GWF Wasser-Abwasser, Band 21, R. Oldenbourg Verlag GmbH, Munchen, 343 pp.Google Scholar
  13. Konikow, L. F. and Bredehoeft, J. D.: 1978, Computer model of two-dimensional solute transport and dispersion in ground water, U.S. Geol. Surv. Techn. of Water-Resour. Invest., Book 7, Chapter C2, 90 pp.Google Scholar
  14. Konikow, L. F., Goode, D. J. and Hornberger, G. Z.: 1996, A three-dimensional method-ofcharacteristics solute-transport model (MOC3D), U.S. Geol. Surv. Water-Res. Invest. Rep. 96-4267, 87 pp.Google Scholar
  15. Kooiman, J. W.: 1989, Modelling the salt-water intrusion in the dune water-catchment area of the AmsterdamWaterworks, Proc. 10th Salt Water Intrusion Meeting, Ghent, Belgium, pp. 132-142.Google Scholar
  16. Leatherman, S. P.: 1984, Coastal Geomorphic Responses to Sea Level Rise: Galveston Bay, Texas, In: M. C. Barth and J. G. Titus, (eds), Greenhouse Effect and Sea Level Rise: A Challenge for this Generation, Van Nostrand Reinhold Co, New York, pp. 151-178.Google Scholar
  17. Lebbe, L. C.: 1983, Mathematical model of the evolution of the fresh-water lens under the dunes and beach with semi-diurnal tides, Proc. 8th Salt Water Intrusion Meeting, Bari, Italy, pp. 211-226.Google Scholar
  18. Lennon, G. P., Wisniewski, G. M. and Yoshioka, G. A.: 1986, Impact of increased river salinity on New Jersey aquifers, In: C. H. J. Hull and J. G. Titus (eds), Greenhouse Effect, Sea Level Rise, and Salinity in the Delaware Estuary, U.S. Environ. Protect. Agency and Delaware River Basin Commission, Washington DC, pp. 40-54.Google Scholar
  19. McDonald, M. G. and Harbaugh, A. W.: 1988, A modular three-dimensional finite-difference ground-water flow model, U.S. Geol. Surv. Techn. of Water-Resour. Invest., Book 6, Chapter A1, 586 pp.Google Scholar
  20. Meisler, H., Leahy, P. P. and Knobel, L. L.: 1984, Effect of eustatic sea-level changes on saltwaterfreshwater in the northern Atlantic coastal plain, U.S. Geol. Surv. Water-Supply Paper 2255.Google Scholar
  21. Navoy, A. S.: 1991, Aquifer-estuary interaction and vulnerability of groundwater supplies to sea level rise-driven saltwater intrusion, PhD Thesis, Pennsylvania State Univ., U.S.A., 225 pp.Google Scholar
  22. Oude Essink, G. H. P.: 1996, Impact of sea level rise on groundwater flow regimes. A sensitivity analysis for The Netherlands. PhD Thesis, Delft University of Technology, The Netherlands, 411 pp.Google Scholar
  23. Oude Essink, G. H. P. and Boekelman, R. H.: 1996, Problems with large-scale modelling of salt water intrusion in 3D, Proc. 14th Salt Water Intrusion Meeting, Malmö, Sweden, pp. 16-31.Google Scholar
  24. Oude Essink, G. H. P.: 1998, MOC3D adapted to simulate 3D density-dependent groundwater flow, Proc. MODFLOW'98 Conf., Golden, Colorado, USA, pp. 291-303.Google Scholar
  25. Oude Essink, G. H. P.: 1999, Impact of sea level rise in The Netherlands, Seawater intrusion in coastal aquifers, In: J. Bear and A.H-D. Cheng et al. (eds), Concepts, Methods and Practices, Kluwer Academic Publishers, pp. 507-530.Google Scholar
  26. Paap, H. A.: 1992, The influence of the rise of sea level on the salinisation process. The code of Konikow-Bredehoeft applied on a 2D cross-section in Noord-Holland, The Netherlands, (in Dutch). MSc Thesis, Delft University of Technology, The Netherlands, 139 pp.Google Scholar
  27. Sanford, W. E. and Konikow, L. F.: 1985, A two-constituent solute-transport model for ground water having variable density U.S. Geol. Surv. Water-Resour. Invest., Report 85-4279, 88 pp.Google Scholar
  28. Stuyfzand, P. J.: 1993, Hydrochemistry and hydrology of the coastal dune area of the Western Netherlands. PhD Thesis, Vrije Universiteit Amsterdam, The Netherlands, 366 pp.Google Scholar
  29. TNO Institute of Applied Geoscience, Delft: 1979, In: R. Lageman and M. Homan (eds), Groundwater Map of The Netherlands: Alkmaar and Medemblik, (in Dutch), 70 pp.Google Scholar
  30. TNO-GG/RIZA: 1994, NAGROM: report 8, supra-regio Holland-Noord, OS 94-44 TNO-GG Institute of Applied Geoscience and Rijkswaterstaat-RIZA.Google Scholar
  31. Van Dam, J. C.: 1976, Partial depletion of saline groundwater by seepage, J. Hydrol. 29, 315-339.Google Scholar
  32. Verruijt, A.: 1980, The rotation of a vertical interface in a porous medium, Water Resour. Res. 16, 239-240.Google Scholar
  33. Warrick, R. A., Oerlemans, J., Woodworth, P. L., Meier, M. F. and le Provost, C.: 1996, Changes in sea level, In: J. T. Houghton, L. G. Meira Filho and B. A. Callander (eds), Climate Change 1995: The Science of Climate, Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel of Climate Change, Cambridge University Press, Cambridge, pp. 359-405.Google Scholar
  34. Wesseling, J.: 1980, Saline seepage in The Netherlands, occurrence and magnitude, Research on possible changes in the distribution of saline seepage in The Netherlands, Committee for Hydrological Research (CHO-TNO), Proc. and Informations, 26, pp. 17-33.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Gualbert H.P. Oude Essink
    • 1
  1. 1.Centre of Hydrology, Department of Theoretical Geophysics, Institute of Earth SciencesUniversity UtrechtUtrechtThe Netherlands

Personalised recommendations