Advertisement

Acta Applicandae Mathematica

, Volume 66, Issue 1, pp 89–121 | Cite as

Solvable Symmetry Structures in Differential Form Applications

  • M. A. Barco
  • G. E. Prince
Article

Abstract

We investigate symmetry techniques for expressing various exterior differential forms in terms of simplified coordinate systems. In particular, we give extensions of the Lie symmetry approach to integrating Frobenius integrable distributions based on a solvable structure of symmetries and show how a solvable structure of symmetries may be used to find local coordinates for the Pfaffian problem and Darboux's theorem.

Frobenius integrable Pfaffian equations Darboux's theorem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Basarab-Horwath, P.: Integrability by quadratures for systems of involutive vector fields, Ukrain. Mat. Zh. 43(10) (1991), 1330–1337; translation in Ukrainian Math. J. 43(10) (1991), (1992), 1236-1242.Google Scholar
  2. 2.
    Bryant, R. L., Chern, S. S., Gardner, R. B., Goldschmidt, H. L., and Griffiths, P. A.: Exterior Differential Systems, Vol. 18, Springer-Verlag, New York, 1991.Google Scholar
  3. 3.
    Cartan, É.: Leçons sur les invariants intégreaux, Hermann, Paris, 1922.Google Scholar
  4. 4.
    Cartan, É.: Les systems differentials extérieures at leurs applications géométrique, Hermann, Paris, 1945.Google Scholar
  5. 5.
    Crampin, M. and Pirani, F.A. E.: Applicable Differential Geometry, London Math. Soc. Lecture Note Ser. 59, Cambridge Univ. Press, Cambridge, 1986.Google Scholar
  6. 6.
    Duzhin, S. V. and Lychagin, V. V.: Symmetries of distributions and quadrature of ordinary differential equations, Acta Appl. Math. 24 (1991), 29–57.Google Scholar
  7. 7.
    Edelen, D. G. B.: Applied Exterior Calculus, Wiley, New York, 1985.Google Scholar
  8. 8.
    Godbillon, C.: Géométrie différentielle et mécanique analytique, Hermann, Paris, 1969.Google Scholar
  9. 9.
    Hartl, T. and Athorne, C.: Solvable structures and hidden symmetries, J. Phys. A: Math. Gen. 27 (1994), 3463–3471.Google Scholar
  10. 10.
    Lie, S.: Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen, Teubner, Leipzig, 1891.Google Scholar
  11. 11.
    Olver, P. J.: Application of Lie Groups to Differential Equations, Springer-Verlag, Berlin, 1986.Google Scholar
  12. 12.
    Olver, P. J.: Equivalence, Invariants, and Symmetry, Cambridge Univ. Press, 1995.Google Scholar
  13. 13.
    Sherring, J. and Prince, G.: Geometric aspects of reduction of order, Trans. Amer. Math. Soc. 334(1) (1992), 433–453.Google Scholar
  14. 14.
    Sherring, J.: Dimsym: Symmetry Determination and Liner Differential Equation Package, School of Mathematics, La Trobe University, 1993.Google Scholar
  15. 15.
    Vaisman, I.: Cohomology and Differential Forms, Marcel Dekker, New York, 1973.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • M. A. Barco
    • 1
  • G. E. Prince
    • 1
  1. 1.School of MathematicsLa Trobe UniversityBundooraAustralia

Personalised recommendations