Climatic Change

, Volume 50, Issue 1–2, pp 31–75 | Cite as

Modeling Global Climate–Vegetation Interactions in a Doubled CO2 World

  • Jon C. Bergengren
  • Starley L. Thompson
  • David Pollard
  • Robert M. DeConto
Article

Abstract

A coupled global vegetation–climate model is used to investigatethe effects of vegetation feedbacks on climate change due to doubling atmospheric CO2. The Equilibrium Vegetation Ecology model (EVE)simulates global terrestrial vegetation and is designed for interactive coupling with climate models. Terrestrial vegetation is resolved into110 plant life forms, which represent groups of species with similar physiognomic characteristics and migrational responses to climate change,thus preserving the spatial integrity of each life-form distribution as climate changes. EVE generates a quantitative description of plant community structure definedby total vegetation cover and the fractional covers of life formsas a function of climate. The equilibrium distribution of each life form is predicted from monthly mean temperature, precipitation, and relative humidity,based on observed correlations with the present climate.The fractional covers of the life forms at each site are determined by parameterizations of dynamic ecological processes: competition for sunlight, disturbances by fire and treefall. A second model (LEAF) simulates the seasonal phenology of EVE's plant canopies, driven by the daily climate at each location, and provides the physical quantities needed for coupling vegetation and climate models.Two pairs of coupled EVE-GCM simulations are described, both with 1× and 2×CO2:the first with prescribed fixed vegetation, and the other with fully interactive vegetation. Large effects of vegetation feedbacks in the interactive simulations are found at the northern and southern ecotones of the boreal forest. Poleward migration of boreal forests into tundra caused by warming due to elevated CO2 is enhanced by a strong snow-masking albedo feedback, consistent with earlier studies. The invasion of temperate grasslands into the southern boreal forest is also enhanced due to summer warming spreading from the north, despitethe opposing sense of the grassland-forest albedo feedback. Desertification of subtropical grasslands is mostly reversed in the interactive simulations due to enhanced monsoonal precipitation. These interactions and other climate and plant community changes caused by climate-vegetation feedbacks are discussed on a regional basis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beerling, D. J., Woodward, F. I., Lomas, M., and Jenkins, A. J.: 1997, ‘Testing the Responses of a Dynamic Global Vegetation Model to Environmental Change: A Comparison of Observations and Predictions’, Global Ecol. Biogeog. Lett. 6,439–450.Google Scholar
  2. Betts, R. A., Cox, P. M., Lee, S. E., and Woodward, F. I.: 1997, ‘Contrasting Physiological and Structural Vegetation Feedbacks in Climate Change Simulations’,Nature 387,796–799.Google Scholar
  3. Bonan, G. B., Pollard, D., and Thompson, S. L.: 1992, ‘Effects of Boreal Forest Vegetation on Global Climate’, Nature 359,716–718.Google Scholar
  4. Botkin, D. B., Janak, J. F., and Wallace, J. R.: 1972a, ‘Some Ecological Consequences of a Computer Model of Forest Growth’, J. Ecol. 60, 849–872.Google Scholar
  5. Botkin, D. B., Janak, J. F., and Wallace, J. R.: 1972b, ‘Rationale, Limitations and Assumptions of a Northeast Forest Growth Simulator’,IBM J. Res. Develop. 16,101–116.Google Scholar
  6. Box, E. O.: 1981a,Macroclimate and Plant Forms: An Introduction to Predictive Modeling in Phytogeography, Dr. W. Junk Publishers, The Hague, p. 258.Google Scholar
  7. Box, E. O.: 1981b, ‘Predicting Physiognomic Vegetation Types with Climate Variables’, Vegetatio 45,127–139.Google Scholar
  8. Charney, J., Stone, P. H., and Quirk, W. J.: 1975, ‘Drought in the Sahara: A Biogeophysical Mechanism’,Science 187,434–435.Google Scholar
  9. Claussen, M. and Gayler, V.: 1997, ‘The Greening of the Sahara during the Mid-Holocene: Results of an Interactive Atmosphere-Biome Model’,Global Ecol. Biogeog. Lett. 6, 369–377.Google Scholar
  10. Claussen, M., Brovkin, V., Ganopolski, A., Kubatzki, C., and Petoukhov, V.: 1998, ‘Modelling Global Terrestrial Vegetation–Climate Interactions’, Phil. Trans. Roy. Soc. London B 353,53–63.Google Scholar
  11. Costa, M. H. and Foley, J. A.: 1999, ‘Combined Effects of Deforestation and Doubled Atmospheric CO2 Concentrations on the Climate of Amazonia’, J. Climate 13,18–34.Google Scholar
  12. Culotta, E.: 1995, ‘Will Plants Profit from High CO2?’,Science 268,654–656.Google Scholar
  13. Davis, M. B.: 1983, ‘Quaternary History of Deciduous Forests of Eastern North America and Europe’, Ann. Missouri Bot. Gard. 70,550–563.Google Scholar
  14. DeConto, R. M., Brady, E. C., Bergengren, J., and Hay, W. W.: 2000, ‘Late Cretaceous Climate, Vegetation and Ocean Interactions’, in Huber, B. T., MacLeod, K. G., and Wing, S. L. (eds.), Warm Climates in Earth History,Cambridge University Press, pp. 275–296.Google Scholar
  15. de Noblet, N. I., Prentice, I. C., Joussaume, S., Texier, D., Botta, A., and Haxeltine, A.: 1996, ‘Possible Role of Atmosphere-Biosphere Interactions in Triggering the Last Glaciation’, Geophys. Res. Lett. 23, 3191–3194.Google Scholar
  16. Doherty, R., Kutzbach, J., Foley, J., and Pollard, D.: 2000, ‘Fully-Coupled Climate/Dynamical Vegetation Model Simulations over Northern Africa during the Mid-Holocene’,Clim. Dyn. 16, 561–573.Google Scholar
  17. Foley, J. A., Levis, S., Costa, M. H., Cramer, W., and Pollard, D.: 2000, ‘Incorporating Dynamic Vegetation Cover within Global Climate Models’, Ecol. Appl. 10,1620–1632.Google Scholar
  18. Foley, J. A., Levis, S., Prentice, I. C., Pollard, D., and Thompson, S. L.: 1998, ‘Coupling Dynamic Models of Climate and Vegetation’,Global Change Biol. 4,561–579.Google Scholar
  19. Foley, J. A., Prentice, I. C., Ramankutty, N., Levis, S., Pollard, D., Sitch, S., and Haxeltine, A.: 1996, ‘An Integrated Biosphere Model of Land Surface Processes, Terrestrial Carbon Balance, and Vegetation Dynamics’,Global Biogeochem. Cycles 10,603–628.Google Scholar
  20. Friend, A. D., Stevens, A. K., Knox, R. G., and Cannell, M. G. R.: 1997, ‘A Process-Based, Terrestrial Biosphere Model of Ecosystem Dynamics (Hybrid v3.0)’,Ecol. Model. 95, 249–287.Google Scholar
  21. Ganopolski, A., Kubatzki, C., Claussen, M., Brovkin, V., and Petoukhov, V.: 1998, ‘The Influence of Vegetation-Atmosphere-Ocean Interaction on Climate during the Mid-Holocene’, Science 280, 1916–1919.Google Scholar
  22. Haxeltine, A. and Prentice, I. C.: 1996, ‘BIOME3: An Equilibrium Terrestrial Biosphere Model Based on Ecophysiological Constraints, Resource Availability and Competition among Plant Functional Types’, Global Biogeochem. Cycles 10,693–709.Google Scholar
  23. Henderson-Sellers, A.: 1993, ‘Continental Vegetation as a Dynamic Component of a Global Climate Model: A Preliminary Assessment’, Clim. Change 23, 337–378.Google Scholar
  24. Hewitt, C. D. and Mitchell, J. F. B.: 1998, ‘A Fully Coupled GCM Simulation of the Climate of the Mid-Holocene’, Geophys. Res. Lett. 25, 361–364.Google Scholar
  25. Holdridge, L. R.: 1947, ‘Determination of World Plant Formations from Simple Climatic Data’, Science 105,267–268.Google Scholar
  26. Jolly, D. and Haxeltine, A.: 1997, ‘Effect of Low Glacial Atmospheric CO2 on Tropical African Montane Vegetation’, Science 276,786–788.Google Scholar
  27. Koppen, W.: 1931,Grunde der Klimakunde,Walter de Gruyter, Berlin, Germany.Google Scholar
  28. Koppen, W.: 1936, ‘Das geographisches System der Klimate’, in Koppen, W. and Geiger, R. (eds.),Handbuch der Klimatologie, Volume I,Gegruder Borntraeger, Berlin.Google Scholar
  29. Kuchler, A. W.: 1990, ‘World Map of Natural Vegetation’, in Goode' World Atlas, 16th edn., Rand McNally, pp. 16–17.Google Scholar
  30. Kutzbach, J. E. and Liu, Z.: 1997, ‘Response of the African Monsoon to Orbital Forcing and Ocean Feedbacks in the Middle Holocene’, Science 278,440–443.Google Scholar
  31. Kutzbach, J. E., Bonan, G., Foley, J. A., and Harrison, S. P.: 1996, ‘Vegetation and Soil Feedbacks on the Response of the African Monsoon to Orbital Forcing in the Early to Middle Holocene’, Nature 384,623–626.Google Scholar
  32. Lean, J. and Rowntree, P. R.: 1997, ‘Understanding the Sensitivity of a GCM Simulation of Amazonian Deforestation to the Specified Vegetation and Soil Characteristics’, J. Climate 10, 1216–1235.Google Scholar
  33. Leemans, R. and Cramer, W. P.: 1990, The IIASA Database for Mean Monthly Values of Temperature, Precipitation and Cloudiness of a Global Terrestrial Grid,WP-41, International Institute of Applied Systems Analyses, Laxenburg Working Paper, IIASA, Laxenburg, Austria, p. 60.Google Scholar
  34. Legates, D. R. and Willmott, C. J.: 1990a, ‘Mean Seasonal and Spatial Variability in Global Surface Air Temperature’, Theor. Appl. Climatol. 41, 11–21.Google Scholar
  35. Legates, D. R. and Willmott, C. J.: 1990b, ‘Mean Seasonal and Spatial Variability in Gauge-Corrected Global Precipitation’,Int. J. Clim.10,111–127.Google Scholar
  36. Levis, S., Foley, J. A., and Pollard, D.: 1999a, ‘Potential High-Latitude Vegetation Feedbacks on CO2-Induced Climate Change’, Geophys. Res. Lett. 26,747–750.Google Scholar
  37. Levis, S., Foley, J. A., and Pollard, D.: 1999b, ‘CO2, Climate, and Vegetation Feedbacks at the Last Glacial Maximum’, J. Geophys. Res. 104,31191–31198.Google Scholar
  38. Levis, S., Foley, J. A., Brovkin, V., and Pollard, D.: 1999c, ‘On the Stability of the High-Latitude Climate-Vegetation System in a Coupled Atmosphere-Biosphere Model’, Global Ecol. Biogeog. 8,489–500.Google Scholar
  39. Levis, S., Foley, J. A., and Pollard, D.: 2000, ‘Large-Scale Vegetation Feedbacks on a Doubled CO2 Climate’,J. Climate 13,1313–1325.Google Scholar
  40. Lieth, H. F. H.: 1975, ‘Modelling the Primary Productivity of the World’, in Lieth, H. and Whittaker, R. H. (eds.), Primary Productivity of the Biosphere. Ecological Studies 14,Springer-Verlag, pp. 275–296.Google Scholar
  41. Matthews, E.: 1983, ‘Global Vegetation and Land Use: New High Resolution Data Bases for Climate Studies’,J. Clim. Appl. Meteorol. 22,474–487.Google Scholar
  42. Monserud, R. A. and Leemans, R.: 1992, ‘Comparing Global Vegetation Maps with the Kappa Statistic’,Ecol. Model. 62, 275–293.Google Scholar
  43. Neilson, R. P.: 1995, ‘A Model for Predicting Continental-Scale Vegetation Distribution and Water Balance’,Ecol. Appl. 5,362–385.Google Scholar
  44. Pollard, D. and Thompson, S. L.: 1995, ‘Use of a Land-Surface-Transfer Scheme (LSX) in a Global Climate Model: The Response to Doubled Stomatal Resistance’,Global Planet. Change 10, 129–161.Google Scholar
  45. Pollard, D., Bergengren, J. C., Stillwell-Soller, L. M., Felzer, B., and Thompson, S. L.: 1998, ‘Climate Simulations for 10000 and 6000 Years BP Using the GENESIS Global Climate Model’, Palaeoclimates – Data Modelling 2, 183–218.Google Scholar
  46. Prentice, I. C., Cramer, W., Harrison, S. P., Leemans, R., Monserud, R. A., and Solomon, A. M.: 1992, ‘A Global Biome Model Based on Plant Physiology and Dominance, Soil Properties and Climate’,J. Biogeogr. 19, 117–134.Google Scholar
  47. Robinson, D. A. and Kukla, G.: 1985, ‘Maximum Surface Albedo of Seasonally Snow-Covered Lands in the Northern Hemisphere’,J. Clim. Appl. Meteorol. 24,402–411.Google Scholar
  48. Schutz, C. and Gates, W. L.: 1971,Global Climatic Data for Surface, 800 mb, 400 mb: January,The Rand Corporation, R-915-ARPA.Google Scholar
  49. Schutz, C. and Gates, W. L.: 1972,Global Climatic Data for Surface, 800 mb, 400 mb: July, The Rand Corporation, R-1029-ARPA.Google Scholar
  50. Schutz, C. and Gates, W. L.: 1973,Global Climatic Data for Surface, 800 mb, 400 mb: April, The Rand Corporation, R-1317-ARPA.Google Scholar
  51. Schutz, C. and Gates, W. L.: 1974,Global Climatic Data for Surface, 800 mb, 400 mb: October, The Rand Corporation, R-1425-ARPA.Google Scholar
  52. Texier, D., de Noblet, N., Harrison, S. P., Haxeltine, A., Jolly, D., Joussaume, S., Laarif, F., Prentice, I. C., and Tarasov, P.:1997, ‘Quantifying the Role of Biosphere-Atmosphere Feedbacks in Climate Change: Coupled Model Simulations for 6000 Years BP and Comparison with Paleodata for Northern Eurasia and Africa’,Clim. Dyn. 13,865–882.Google Scholar
  53. Thompson, S. L. and Pollard, D.: 1995a, ‘A Global Climate Model (GENESIS) with a Land-Surface Transfer Scheme (LSX). Part I: Present Climate Simulation’,J. Climate 8,732–761.Google Scholar
  54. Thompson, S. L. and Pollard, D.: 1995b, ‘A Global Climate Model (GENESIS) with a Land-Surface Transfer Scheme (LSX). Part II: CO2 Sensitivity’,J. Climate 8,1104–1121.Google Scholar
  55. Thornthwaite, C. W. and Mather, J. R.: 1957, ‘Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance’, Climatology 10, 185–311.Google Scholar
  56. VEMAP Members: 1995, ‘VEMAP: A Comparison of Biogeography and Biogeochemistry Models in the Context of Global Climate Change’,Global Biogeochem. Cycles 9,407–437.Google Scholar
  57. Webb, T. III: 1987, ‘The Appearance and Disappearance of Major Vegetational Assemblages: Long-Term Vegetational Dynamics in Eastern North America’, Vegetatio 69,177–187.Google Scholar
  58. Willmott, C. J. and Klink, K.: 1986, ‘A Representation of the Terrestrial Biosphere for Use in Global Climate Studies’, in Proceedings of the ISLSCP Conference, Rome, Italy, December 1985, European Space Agency, Paris, pp.109–112.Google Scholar
  59. Woodward, F. I., Smith, T. M., and Emanuel, W. R.: 1995, ‘A Global Land Primary Productivity and Phytogeography Model’, Global Biogeochem. Cycles 9,471–490.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Jon C. Bergengren
    • 1
  • Starley L. Thompson
    • 2
  • David Pollard
    • 3
  • Robert M. DeConto
    • 4
  1. 1.Sausalito
  2. 2.National Center for Atmospheric ResearchBoulderUSA
  3. 3.Earth System Science CenterPennsylvania State UniversityUniversity ParkUSA
  4. 4.Department of GeosciencesUniversity of MassachusettsAmherstUSA

Personalised recommendations