Journal of Atmospheric Chemistry

, Volume 39, Issue 2, pp 123–138 | Cite as

A Comparison of Match Ozonesonde-Derived and 3D Model Ozone Loss Rates in the Arctic Polar Vortex during the Winters of 1994/95 and 1995/96

  • I. Kilbane-Dawe
  • N. R. P. Harris
  • J. A. Pyle
  • M. Rex
  • A. M. Lee
  • M. P. Chipperfield

Abstract

Ozone loss rates from ozonesonde data reported in the Match experiments of winters 1994/95 and 1995/96 inside the Arctic polar vortex are compared with simulations of the same winters performed using the SLIMCAT 3D chemistry and transport model. For 1994/95 SLIMCAT reproduces the location and timing of the diagnosed ozone destruction, reaching 10 ppbv/sunlit hour in late January as observed. SLIMCAT underestimates the loss rates observed in February and March by 1–3 ppbv/sunlit hour. By the end of March, SLIMCAT ozone exceeds the observations by 25–35%. In January 1995 the ozonesonde-derived loss rates at levels above 525 K are not chemical in origin but due to poor conservation of air parcels. Correcting temperature biases in the model forcing data significantly improved the agreement between the model and observed ozone at the end of winter 1994/95, increasing ozone destruction in SLIMCAT in February and March. The SLIMCAT simulation of winter 1995/96 does not reproduce the maximum ozone loss rates diagnosed by Match of 13 ppbv/sunlit hour. Comparing the data for the two winters reveals that the SLIMCAT photochemistry is least able to reproduce observed losses at low temperatures or when low temperatures coincide with high solar zenith angles (SZA). When cold (T = 192 K), high SZA (≥90°)matches are excluded from the 1995/96 analysis, agreement between the diagnoses and SLIMCAT is better with ozone loss rates of up to 6 ppbv/sunlit hour. For the rest of the winter SLIMCAT consistently underestimates the Match rates of ozone loss by 1–3 ppbv/sunlit hour. In March 1996 the monthly mean SLIMCAT ozone is 50% greater than observations at 430–540 K. In both winters, ozone destruction rates peaked more rapidly and declined more slowly in the Match observations than in the SLIMCAT simulations. The differences between the observed and modelled cumulative ozone losses demonstrate that the total ozone destruction by the end of the winter is sensitive to errors in the instantaneous ozone loss rates of 1–3 ppbv/sunlit hour.

ozone stratosphere modelling chemistry Match Arctic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker, G., Muller, R., McKenna, D. S., Rex, M., and Carslaw, K. S., 1998: Ozone loss rates in the Arctic stratosphere in the winter 1991/92: Model calculations compared with Match results, Geophys. Res. Lett. 25, 4325-4328.Google Scholar
  2. Becker, G., Muller, R., McKenna, D. S., Rex, M., Carslaw, K. S., and Oelhaf, H., 1999: Ozone loss rates in the Arctic stratosphere in the winter 1994/95: Model simulations underestimate results of the Match analysis, submitted to J. Geophys. Res..Google Scholar
  3. Carslaw, K., Wirth, M., Tsias, A., Luo, B. P., Dornbrack, A., Leutbecher, M., Volkert, H., Renger,W., Bacmeister, J. T., Reimer, E., and Peter, T., 1998: Increased stratospheric ozone depletion due to mountain-induced atmospheric waves, Nature 391, 675-678.Google Scholar
  4. Chipperfield, M. P., Santee, M. L., Froidevaux, L, Manney, G. L., and Read, W. G., 1996: Analysis of UARS data in the southern polar vortex in September 1992 using a chemical-transport model, J. Geophys. Res. 101, 18861-18881.Google Scholar
  5. Chipperfield, M. P., 1999: Multi-annual simulations with a three-dimensional chemical transport model, J. Geophys. Res. 104, 1781-1805.Google Scholar
  6. Goutail, F., Pommereau, J-P., Phillips, C., Deniel, C., Sarkissian, A., Lefevre, F., Kyo, E., Rummukainen, M., Ericksen, P., Andersen, S., Kaastad-Hoiskar, B-A., Braathen, G., Dorokhov, V., and Kattatov, V., 1999: Depletion of column ozone in the Arctic during the winters of 1993-94 and 1994-95, J. Atmos. Chem 32, 1-34.Google Scholar
  7. Guirlet, M., Chipperfield, M. P., Pyle, J. A., Goutail, F., Pommereau, J. P., and Kyro, E., 2000: Modelled Arctic ozone depletion in winter 1997/1998 and comparison with previous winters, J. Geophys. Res. 105, 22185-22200.Google Scholar
  8. Hansen, G., Svenoe, T., Chipperfield, M. P., Dahlback, A., and Hoppe, U. P., 1997: Evidence of substantial ozone depletion in winter 1995/96 over Northern Norway, Geophys. Res. Lett. 24, 799-802.Google Scholar
  9. Hanson, D. and Mauersberger, K., 1988: Laboratory studies of the nitric acid trihydrate: Implications for the south polar stratosphere, Geophys. Res. Lett. 15, 855-858.Google Scholar
  10. Knudsen, B. M., 1996: Accuracy of arctic stratospheric temperature analyses and the implications for the prediction of polar stratospheric clouds, Geophys. Res. Lett. 23, 3747-3750.Google Scholar
  11. Lary, D. J., 1991: Photochemical Studies with a Three-Dimensional Model of the Atmosphere, University of Cambridge.Google Scholar
  12. Lary, D. J., Chipperfield, M. P., Pyle, J. A., Norton, W. A., and Riishojgaard, L. P., 1995: 3-dimensional tracer initialization and general diagnostics using equivalent PV latitude-potentialtemperature coordinates, Quart. J. Roy. Met. Soc. 121, 187-210.Google Scholar
  13. Müller, R., Grooss, J., McKenna, D., Crutzen, P., Bruhl, C., Russell, J., and Tuck, A., 1997: HALOE observations of the vertical structure of chemical ozone depletion in the Arctic vortex during winter and early spring 1996-1997, Geophys. Res. Lett. 24, 2717-2720.Google Scholar
  14. Prather, M. J., 1986: Numerical advection by conservation of second-order moments, J. Geophys. Res. 91, 6671-6681.Google Scholar
  15. Pullen, S. and Jones, R., 1997: Accuracy of temperatures from UKMO analyses of 1994/95 in the winter stratosphere, Geophys. Res. Lett. 24, 845-848.Google Scholar
  16. Pullen, S., 1998: Ph.D. Thesis, University of Cambridge.Google Scholar
  17. Rex, M., Harris, N. R. P., von der Gathen, P., Lehmann, R., Braathen, G. O., Reimer, E., Beck, A., Chipperfield, M. P., Alfier, R., Allaart, M., Connor, F. O., Dier, H., Dorokhov, V., Fast, H., Gil, M., Kyro, E., Litynska, Z., Mikkelsen, I. S., Molyneux, M. G., Nakane, H., Notholt, J., Rummukainen, M., Viatte, P., and Wenger, J., 1995: Prolonged stratospheric ozone loss in the 1995/96 Arctic winter, Nature 389, 835-838.Google Scholar
  18. Rex, M., von der Gathen, P., Braathen, G. O., Harris, N. R. P., Reimer, E., Beck, A., Alfier, R., Kruger-Carstensen, R., Chipperfield, M. P., de Backer, H., Balis, D., O'Connor, F., Dier, H., Dorokhov, V., Fast, H., Gamma, A., Gils, M., Kyro, E., Litynska, Z., Mikkelsen, S., Molyneux, M., Murphy, G., Reid, S. J., Rummukainen, M., and Zerefos, C., 1999: Chemical ozone loss in the Arctic Winter 1994/95 as determined by the Match technique, J. Atmos. Chem. 32, 35-59.Google Scholar
  19. Ramaroson, R., Pirre, M., and Cariolle, D., 1992: A box model for on-line computations of diurnal variations in a 1-D model: Potential for application in multidimensional cases, Annales geophysicae 10, 416-428.Google Scholar
  20. Shine, K. P., 1989: Sources and sinks of zonal momentum in the middle atmosphere diagnosed using the diabatic circulation, Quart. J. Roy. Met. Soc. 115, 265-292.Google Scholar
  21. von der Gathen, P., Rex, M., Harris, N. R. P., Lucic, D., Knudsen, B. J., Braathen, G. O., de Backer, H., Fabian, R., Fast, H., Gil, M., Kyrö, E., Mikkelsen, I. S., Rummukainen, M., Stähelin, J., and Varotsos, C., 1995: Observational evidence for chemical ozone depletion over the Arctic in winter 1991-92, Nature 375, 131-134.Google Scholar
  22. Vömel, H., Rummukainen, M., Kivi, R., Karhu, J., Turunen, T., Kyro, E., Rosen, J., Kjome, N., and Oltmans, S., 1997: Dehydration and sedimentation of ice particles in the Arctic stratospheric vortex, Geophys. Rev. Lett. 24, 795-798.Google Scholar
  23. Waibel, A. E., Peter, T., Carslaw, K. S., Oelhaf, H., Wetzel, G., Crutzen, P. J., Poschl, U., Tsias, A., Reimer, E., and Fischer, H., 1999: Arctic ozone loss due to denitrification, Science 283, 2064-2069.Google Scholar
  24. World Meteorological Organisation (WMO), 1999: Scientific assessment of ozone depletion: 1998, global ozone research and monitoring project, WMO Global Ozone Research Monitoring and Project Report No. 44.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • I. Kilbane-Dawe
    • 1
    • 2
  • N. R. P. Harris
    • 1
  • J. A. Pyle
    • 2
  • M. Rex
    • 4
  • A. M. Lee
    • 2
  • M. P. Chipperfield
    • 5
  1. 1.European Ozone Research Co-ordinating UnitUniversity of CambridgeCambridgeU.K.
  2. 2.Centre for Atmospheric ScienceUniversity of CambridgeU.K.
  3. 3.Cambridge Environmental Research Consultants LtdCambridgeU.K.
  4. 4.Alfred Wegener Institute for Polar and Marine ResearchPotsdamGermany
  5. 5.The Environment CentreUniversity of LeedsU.K

Personalised recommendations