Advertisement

A Coupled Ecosystem-Climate Model for Predicting the Methane Concentration in the Archean Atmosphere

  • James F. KastingEmail author
  • Alexander A. Pavlov
  • Janet L. Siefert
Article

Abstract

A simple coupled ecosystem-climate model is described that canpredict levels of atmospheric CH4, CO2, and H2during the Late Archean, given observed constraints on Earth'ssurface temperature. We find that methanogenic bacteria shouldhave converted most of the available atmospheric H2 intoCH4, and that CH4 may have been equal in importance to CO2 as a greenhouse gas. Photolysis of this CH4 may have produced a hydrocarbon smog layer that would have shielded the surface from solar UV radiation. Methanotrophic bacteria would have consumed some of the atmospheric CH4,but they would have been incapable of reducing CH4 to modern levels. The rise of O2 around 2.3 Ga would have drastically reduced the atmospheric CH4 concentrationand may thereby have triggered the Huronian glaciation.

Archean atmosphere Archean ecosystems atmospheric methane methanogenic bacteria paleoclimate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brocks, J. J. et al.: 1999, Archean Molecular Fossils and the Early Rise of Eukaryotes. Science 285, 1033–1036.Google Scholar
  2. Brown, L. L.: 1999, Photochemistry and climate on early Earth and Mars, Penn State University.Google Scholar
  3. Cameron, E. M.: 1982, Sulphate and Sulphate Reduction in the Early Precambrian Oceans. Nature 296, 145–148.Google Scholar
  4. Canfield, D. E.: 1998, A New Model for Proterozoic Ocean Chemistry. Nature 396, 450–453.Google Scholar
  5. Canfield, D. E., Habicht, K. S. and Thamdrup, B.: 2000, The Archean Sulfur Cycle and the Early History of Atmospheric Oxygen. Science 288, 658–661.Google Scholar
  6. Canil, D.: 1997, Vanadium Partitioning and the Oxidation State of Archaean Komatiite Magmas. Nature 389, 842–845.Google Scholar
  7. Chapman, D. J. and Schopf, J. W.: 1983, 'Biological and Biochemical Effects of the Development of an Aerobic Environment', in Schopf, J. W. (ed.), Earth's Earliest Biosphere: Its Origin and Evolution, Princeton, NJ, Princeton University Press, pp. 302–320.Google Scholar
  8. Cloud, P. E.: 1972, A Working Model of the Primitive Earth. Amer. J. Sci. 272, 537–548.Google Scholar
  9. Conrad, R.: 1996, Soil Microorganisms as Controllers of Atmospheric Trace Gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol. Rev. 60, 609–640.Google Scholar
  10. Delano, J. W.: 2001, Redox History of the Earth's Interior Since ∼3900 Ma: Implications for Prebiotic Molecules. Origins of Life and Evol. of the Biosph., in press.Google Scholar
  11. Dunfield, P. F., Liesack, W., Henckel, T., Knowles, R. and Conrad, R.: 1999, High-Affinity Methane Oxidation by a Soil Enrichment Culture Containing a Type II Methanotroph. Appl. Environ. Microbiol. 65, 1009–1014.Google Scholar
  12. Eady, R. R.: 1991, 'Chapter 22: The Dinitrogen-Fixing Bacteria', in Balows, A., Truper, H. G., Dworkin, M., Harder, W., and Schliefer, K.-H. (eds.), The Prokaryotes: A Handbook on the Biology of Bacteria, Ecophysiology, Isolation, Identification, Applications, Second (ed.), New York, Springer-Verlag, pp. 534–553.Google Scholar
  13. Evans, D. A. et al.: 1997, Low-Latitude Glaciation in the Proterozoic Era. Nature 386, 262–266.Google Scholar
  14. Gough, D. O.: 1981, Solar Interior Structure and Luminosity Variations. Solar Phys. 74, 21–34.Google Scholar
  15. Hanson, R. S. and Hanson, T. E.: 1996, Methanotrophic Bacteria. Microbiological Rev. 60, 439–471.Google Scholar
  16. Hayes, J. M.: 1983, 'Geochemical Evidence Bearing on the Origin of Aerobiosis, a Speculative Hypothesis', in Earth's Earliest Biosphere: Its Origin and Evolution, 291–301. (ed.) by Schopf, J. W.. Princeton, New Jersey: Princeton University Press.Google Scholar
  17. Hayes, J. M.: 1994, 'Global Methanotrophy at the Archean-Proterozoic Transition', in Bengtson, S. (ed.), Early Life on Earth, p. 220–236. New York: Columbia University Press.Google Scholar
  18. Holland, H. D.: 1984, The Chemical Evolution of the Atmosphere and Oceans, Princeton: Princeton University PressGoogle Scholar
  19. Holland, H. D.: 1978, The Chemistry of the Atmosphere and Oceans, New York: Wiley.Google Scholar
  20. Holland, H. D.: 1994, 'Early Proterozoic Atmospheric Change', in Bengtson (ed.), Early Life on Earth, p. 237–244. S. New York: Columbia Univ. Press.Google Scholar
  21. Hunten, D. M.: 1973, The Escape of Light Gases from Planetary Atmospheres. J. Atmos. Sci. 30, 1481–1494.Google Scholar
  22. Karhu, J. A. and Holland, H. D.: 1996, Carbon Isotopes and the Rise of Atmospheric Oxygen. Geology 24, 867–870.Google Scholar
  23. Kasting, J. F.: 1993, Earth's Early Atmosphere. Science 259, 920–926.Google Scholar
  24. Kasting, J. F.: 1992, 'Models Relating to Proterozoic Atmospheric and Oceanic Chemistry', in Schopf, J. W. and Klein (eds.), The Proterozoic Biosphere: A Multidisciplinary Study, p. 1185–1187, Cambridge: Cambridge University Press.Google Scholar
  25. Kasting, J. F., Eggler, D. H. and Raeburn, S. P.: 1993, Mantle Redox Evolution and the Oxidation State of the Archean Atmosphere. J. Geol. 101, 245–257.Google Scholar
  26. Kasting, J. F. and Brown, L. L.: 1998, 'Setting the Stage: the Early Atmosphere as a Source of Biogenic Compounds', in Brack, A. (ed.), The Molecular Origins of Life: Assembling the Pieces of the Puzzle, 35–56. New York: Cambridge Univ. Press.Google Scholar
  27. Kasting, J. F. et al.: 1983, Photochemistry of Methane in the Earth's Early Atmosphere. Precambrian Res. 20, 121–148.Google Scholar
  28. Kiehl, J. T. and Dickinson, R. E.: 1987, A Study of the Radiative Effects of Enhanced Atmospheric CO2 and CH4 on Early Earth Surface Temperatures. J. Geophys. Res. 92, 2991–2998.Google Scholar
  29. Knoll, A. H., Hayes, J. M., Kaufman, A. J., Swett, K. and Lambert, I. B.: 1986, Secular Variation in Carbon Isotope Ratios from Upper Proterozoic Successions of Svalbard and East. Greenland, Nature 321, 832–838.Google Scholar
  30. Kral, T. A. et al.: 1998, Hydrogen Consumption by Methanogens on the Early Earth. Origins of Life and Evol. of the Biosph. 28, 311–319.Google Scholar
  31. Lovelock, J.: 1988, The Ages of Gaia, New York: W.W. Norton.Google Scholar
  32. McKay, C. P. et al.: 1991, The Greenhouse and Antigreenhouse Effects on Titan. Science 253, 1118–1121.Google Scholar
  33. Ohmoto, H.: 1996, Evidence in Pre-2.2 Ga Paleosols for the Early Evolution of Atmospheric Oxygen and Terrestrial Biota. Geology 24, 1135–1138.Google Scholar
  34. Ohmoto, H.: 1997, When did the Earth's Atmosphere Become Oxic? Geochemical News 93, p. 13.Google Scholar
  35. Pavlov, A. A. et al.: 2000, Greenhouse Warming by CH4 in the Atmosphere of Early Earth. J. Geophys. Res 105, 11981–11990.Google Scholar
  36. Pinto, J. P. et al.: 1980, Photochemical Production of Formaldehyde in the Earth's Primitive Atmosphere. Science 210, 183–185.Google Scholar
  37. Riley, J. P. and Chester, R.: 1971, Introduction to Marine Chemistry, New York, Academic Press.Google Scholar
  38. Roscoe, S.M.: 1969, Huronian Rocks and Uraniferous Conglomerates in the Canadian Shield. Geol. Surv. Can. Pap.Google Scholar
  39. Roscoe, S. M.: 1973, The Huronian Supergroup: a Paleophebian Succession Showing Evidence of Atmospheric Evolution. Geol. Soc. Can. Spec. Pap. 12, 31–48.Google Scholar
  40. Rye, R. et al.: 1995, Atmospheric Carbon Dioxide Concentrations before 2.2 Billion Years Ago. Nature 378, 603–605.Google Scholar
  41. Sagan, C. and Chyba, C.: 1997, The Early Faint Sun Paradox: Organic Shielding of Ultraviolet-Labile Greenhouse Gases. Science 276, 1217–1221.Google Scholar
  42. Schidlowski, M., Hayes, J. M. and Kaplan, I. R.: 1983, 'Isotopic Inferences of Ancient Biochemistries: Carbon, Sulfur, Hydrogen, and Nitrogen', in: Schopf, J. W. (ed.), Earth's Earliest Biosphere: Its Origin and Evolution, Princeton, New Jersey: Princeton University Press, pp. 149–186.Google Scholar
  43. Schopf, J. W.: 1993, Microfossils of the Early Archean Apex Chert: New Evidence for the Antiquity of Life. Science 260, 640–646.Google Scholar
  44. Seitz, H. J., Schink, B., Pfennig, N. and Conrad, R.: 1990, Energetics of Syntrophic Ethanol Oxidation in Defined Chemostat Cocultures. I. Energy Requirement for H2 Production and H2 Oxidation. Arch. Microbiol. 155, 82–88.Google Scholar
  45. Taylor, S. R. and McLennan, S. M.: 1995, The Geochemical Evolution of the Continental Crust. Rev. Geophysics 3, 241–265.Google Scholar
  46. Thauer, R. K.: 1998, Biochemistry of Methanogenesis: a Tribute to Marjorie Stephenson. Microbiology 144, 2377–2406.Google Scholar
  47. Turcotte, D. L.: 1980, On the Thermal Evolution of the Earth. Earth Planet. Sci. Lett. 48, 53–58.Google Scholar
  48. Walker, J. C. G.: 1977, Evolution of the Atmosphere, New York: Macmillan.Google Scholar
  49. Walker, J. C. G. et al.: 1981, A Negative Feedback Mechanism for the Long-Term Stabilization of Earth's Surface Temperature. J. Geophys. Res. 86, 9776–9782.Google Scholar
  50. Walker, J. C. G. et al.: 1983, 'Environmental Evolution of the Archean-Early Proterozoic Earth', in Schopf, J. W. (ed.), Earth's Earliest Biosphere: Its Origin and Evolution, 260–290, Princeton, New Jersey: Princeton University Press.Google Scholar
  51. Watson, R. T. et al.: 1990, 'Greenhouse Gases and Aerosols', in Houghton, J. T., Jenkins, G. J. and Ephraums, J. J. (eds.), Climate Change: The IPCC Scientific Assessment, p. 1–40. Cambridge: Cambridge University Press.Google Scholar
  52. Woese, C. R. and Fox, G. E.: 1977, Phylogenetic Structure of the Prokaryotic Domain: the Primary Kingdoms. Proc. Natl. Acad. Sci. U.S.A. 74, 5088–5090.Google Scholar
  53. Zahnle, K. J.: 1986, Photochemistry of Methane and the Formation of Hydrocyanic Acid (HCN) in the Earth's Early Atmosphere. J. Geophys. Res. 91, 2819–2834.Google Scholar
  54. Zinder, S. H.: 1993, 'Physiological Ecology of Methanogens', in Ferry, J. G. (ed.), Methanogenesis: Ecology, Physiology, Biochemistry, and Genetics, 128–206. New York: Chapman and Hall.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • James F. Kasting
    • 1
    Email author
  • Alexander A. Pavlov
    • 1
  • Janet L. Siefert
    • 2
  1. 1.Department of GeosciencesPenn State UniversityUniversity Park
  2. 2.Department of StatisticsRice UniversityHouston

Personalised recommendations