Advertisement

Biotechnology Letters

, Volume 23, Issue 14, pp 1165–1169 | Cite as

Kinetic model of lysozyme renaturation with the molecular chaperone GroEL

  • Xiao-Yan Dong
  • Yu-Bing Wang
  • Xiao-Guang Liu
  • Yan SunEmail author
Article

Abstract

From the renaturation kinetics of denatured/reduced lysozyme assisted by the molecular chaperone GroEL, a simplified kinetic model was established based on the competition between protein folding and aggregation. In the presence of GroEL and ATP, the aggregate formation was a second order reaction. With 2 mM ATP, a renaturation yield of 90% at a high renaturation rate was obtained when the molar ratio of GroEL to lysozyme was 1:1.

GroEL kinetics lysozyme model renaturation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dong X-Y, Yang H, Sun Y (1999) Lysozyme reactivation using immobilized molecular chaperonin GroEL. Biotechnol. Tech. 13: 637–641.Google Scholar
  2. Dong X-Y, Yang H, Sun Y (2000) Lysozyme refolding with immobilized GroEL column chromatography, J. Chromatogr. A878: 197–204.Google Scholar
  3. Ellis RJ, van der Vies SM (1991) Molecular chaperones. Annu. Rev. Biochem. 60: 321–347.Google Scholar
  4. Fisher MT (1992) Promotion of the in vitro renaturation of dodecametric glutamine synthetase from Escherichia coli in the presence of GroEL (chaperonin-60) and ATP. Biochemistry 31: 3955–3963.Google Scholar
  5. Guise AD, Chaudhuri JB (1998) Recovery and reuse of the molecular chaperone GroEL for in vitro protein refolding. Biotechnol. Prog. 14: 343–346.Google Scholar
  6. Hevehan DL, De Bernardez Clark E (1997) Oxidative renaturation of lysozyme at high concentrations. Biotechnol. Bioeng. 54: 221–230.Google Scholar
  7. Jenkins AJ, March JB, Oliver IR, Masters M (1986) DNA fragment containing the groE genes can suppress mutations in Escherichia coli dnaA genes. Mol. Gen. Genet. 202: 446–454.Google Scholar
  8. Jeong W, Shin N-K, Shin N-C (1997) Bacterial chaperones increase the production of soluble human TNF-α Escherichia coli. Biotechnol. Lett. 19: 579–582.Google Scholar
  9. Maachupall-Reddy J, Kelley BD, De Bernardez Clark E (1997) Effect of inclusion body contaminants on the oxidative renaturation of hen egg white lysozyme. Biotechnol. Prog. 13: 144–150.Google Scholar
  10. Mendoza JA, Rogers E, Lorimer GH, Horowitz PM (1991) Chaperonins facilitate the in vitro folding of monomeric mitochondrial rhodanase. J. Biol. Chem. 266: 13044–13049.Google Scholar
  11. Rozema D, Gellman SH (1996) Artificial chaperone-assisted refolding of denatured-reduced lysozyme: modulation of the competition between renaturation and aggregation. Biochemistry 35: 15760–15771.Google Scholar
  12. Teshima T, Kondo A, Fukuda H (1997) Reactivation of thermally inactivated enzymes by free and immobilized chaperonin GroEL/ES. Appl. Microbiol. Biotechnol. 48: 41–46.Google Scholar
  13. Tsurupa GP, Ikura T, Makio T, Kuwajima K (1998) Refolding kinetics of staphylococcal nuclease and its mutants in the presence of the chaperonin GroEL. J. Mol. Biol. 277: 733–745.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Xiao-Yan Dong
    • 1
  • Yu-Bing Wang
    • 2
  • Xiao-Guang Liu
    • 3
  • Yan Sun
    • 3
    Email author
  1. 1.Department of Biochemical EngineeringTianjin UniversityTianjinPeople's Republic of China
  2. 2.The University LibraryTianjin UniversityTianjinPeople's Republic of China
  3. 3.Department of Biochemical EngineeringTianjin UniversityTianjinPeople's Republic of China

Personalised recommendations