Advertisement

Solar System Research

, Volume 35, Issue 3, pp 198–208 | Cite as

L- and LL-Chondritic Models of the Chemical Composition of Io

  • O. L. Kuskov
  • V. A. Kronrod
Article

Abstract

A geologically admissible range for the density of Io's mantle, its chemical and mineral compositions in the \({\text{Na}}_{\text{2}} {\text{O - TiO}}_{\text{2}} {\text{ - CaO - FeO - MgO - Al}}_{\text{2}} {\text{O}}_{\text{3}} {\text{ - SiO}}_{\text{2}}\)system, and the size of an Fe–FeS core are determined by mathematical simulation based on the fitting of the calculated mass and moment of inertia of Io to the experimental data. It is demonstrated that the bulk chemical composition of Io (crust + mantle + core) most closely resembles the composition of ordinary L and LL chondrites. The densities of mineral assemblages in the mantle and the iron concentration in the core, calculated on the basis of the L- and LL-chondritic models, meet the geophysical constraints on the mass and the moment of inertia of Io. The core radius is estimated to be 590–640 km for the Fe core (8–10% of Io's mass) and 820–890 km for the Fe–FeS eutectic core (13.5–17%).

Keywords

Iron Experimental Data Iron Concentration Mineral Composition Mineral Assemblage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Anderson, J.D., Sjogren, W.L., and Schubert, G., Galileo Gravity Results and the Internal Structure of Io, Science, 1996, vol. 272, pp. 709-712.Google Scholar
  2. Ahrens, T.J., Equation of State of Iron Sulfide and Constraints on the Sulfur Content of the Earth, J. Geophys. Res., 1979, vol. 84, pp. 985-998.Google Scholar
  3. Bertka, C.M. and Fei, Y., Mineralogy of the Martian Interior up to Core—Mantle Boundary Pressure, J. Geophys. Res., 1997, vol. 102B, pp. 5251-5264.Google Scholar
  4. Consolmagno, G.J., Io: Thermal Models and Chemical Evolution, Icarus, 1981, vol. 47, pp. 38-45.Google Scholar
  5. Dreibus, G. and Wänke, H.,Comparison of the Chemistry of the Moon and Mars, Adv. Space Res., 1990, vol. 10, pp. (3)7-(3)16.Google Scholar
  6. D'yakonova, M.I., Kharitonova, I.Ya., and Yavnel', A.A., Khimicheskii sostav meteoritov (Chemical Composition of Meteorites), Moscow: Nauka, 1979.Google Scholar
  7. Ebel, D.S. and Grossman, L., Condensation in DustEnriched Systems, Geochim. Cosmochim. Acta, 2000, vol. 64, pp. 339-366.Google Scholar
  8. Fabrichnaya, O.B. and Kuskov, O.I., Constitution of the Moon: I. Assessment of Thermodynamic Properties and Reliability of Phase Relation Calculations in the FeO-MgO-Al2O3-SiO2 System, Phys. Earth Planet. Inter., 1994, vol. 83, pp. 175-196.Google Scholar
  9. Fei, Y., Prewitt, C.T., Mao, H., et al., Structure and Density of FeS at High Pressure and High Temperature and the Internal Structure of Mars, Science, 1995, vol. 268, pp. 1892-1894.Google Scholar
  10. Jarosewich, E., Chemical Analyses of Meteorites: A Compilation of Stony and Iron Meteorite Analyses, Meteoritics, 1990, vol. 25, pp. 323-337.Google Scholar
  11. Jessberger, E.K. and Kissel, J., The Composition of Comets, in Origin and Evolution of Planetary and Satellite Atmospheres, Atreya, S.K. et al., Eds., Tucson: Univ. of Arizona Press, 1989, pp. 167-191.Google Scholar
  12. Kargel, J.S., Delmelle, P., and Nash, D.B., Volcanogenic Sulfur on Earth and Io: Composition and Spectroscopy, Icarus, 1999, vol. 142, pp. 249-280.Google Scholar
  13. Keszthelyi, L. and McEwen, A., Magmatic Differentiation of Io, Icarus, 1997, vol. 130, pp. 437-448.Google Scholar
  14. Kivelson, M.G., Khurana, K.K., Walker, R.J., et al., A Magnetic Signature at Io: Initial Report from the Galileo Magnetometer, Science, 1996, vol. 273, pp. 337-340.Google Scholar
  15. Kong, P. and Ebihara, M., The Origin and Nebula History of the Metal Phase of Ordinary Chondrites, Geochim. Cosmochim. Acta, 1997, vol. 61, pp. 2317-2329.Google Scholar
  16. Konopliv, A.S., Binder, A.B., Hood, L.L., et al., Improved Gravity Field of the Moon from Lunar Prospector, Science, 1998, vol. 281, pp. 1476-1480.Google Scholar
  17. Ksanfomaliti, L.V., Sputniki vneshnikh planet i Pluton (Outer Planets' Satellites and Pluto), Moscow: Znanie, 1987.Google Scholar
  18. Kuskov, O.L. and Galimzyanov, R.F., Thermodynamics of Stable Mineral Assemblages of the Mantle Transition Zone, in Chem. Phys. Terr. Planets, Saxena, S., Ed., New York: Springer, 1986, pp. 310-361.Google Scholar
  19. Kuskov, O.L. and Panferov, A.B., Thermodynamic Models for the Structure of the Martian Upper Mantle, Geokhimiya, 1993, no. 1, pp. 131-142.Google Scholar
  20. Kuskov, O.L, Constitution of the Moon: 4. Composition of the Mantle from Seismic Data, Phys. Earth Planet. Inter., 1997, vol. 102, pp. 239-257.Google Scholar
  21. Kuskov, O.L., Kronrod, V.A., and Basilevsky, A.T., Models of the Interior Structure of Io, Geokhimiya, 1997, no. 12, pp. 1171-1180.Google Scholar
  22. Kuskov, O.L. and Kronrod, V.A., Constitution of the Moon: 5. Constraints on Composition, Density, Temperature, and Radius of a Core, Phys. Earth Planet. Inter., 1998, vol. 107, pp. 285-306.Google Scholar
  23. Kuskov, O.L. and Kronrod, V.A., The Moon: Chemical Composition and Internal Structure, Astron. Vestn., 1999, vol. 33, no. 5, pp. 437-446 [Sol. Syst. Res. (Engl. transl.), 1999, vol, 33, no. 5, pp. 382–391].Google Scholar
  24. Lebedev, E.B., Kadik, A.A., Kuskov, O.L., Dorfman, A.M., and Lukanin O.A., The Motion of Sulfide Phases in a Partially Molten Silicate Material: Application to the Problem of the Formation of Planetary Nuclei, Astron. Vestn., 1999, vol. 33, no. 5, pp. 395-405 [Sol. Syst. Res. (Engl. transl.), 1999. vol. 33, no. 5, pp. 346–355].Google Scholar
  25. Lewis, J.S., Io: Geochemistry of Sulfur, Icarus, 1982, vol. 50, pp. 103-114.Google Scholar
  26. Lewis, J.S., Physics and Chemistry of the Solar System, San Diego: Academic, 1997.Google Scholar
  27. Lodders, K. and Fegley, B., An Oxygen Isotope Model for the Composition of Mars, Icarus, 1997, vol. 126, pp. 373-394.Google Scholar
  28. Makalkin, A.B., Dorofeeva, V.A., and Ruskol, E.L., Modeling the Protosatellite CircumJovian Accretion Disk: An Estimate of the Basic Parameters, Astron. Vestn., 1999, vol. 33, no. 6, pp. 518-526 [Sol. Syst. Res. (Engl. transl.), 1999, vol. 33, no. 6, pp. 456–463].Google Scholar
  29. McEwen, A.S. et al., HighTemperature Silicate Volcanism on Jupiter's Moon Io, Science, 1998, vol. 281, pp. 87-90.Google Scholar
  30. McSween, H.Y., Bennet, M.E., and Jarosewich, E., The Mineralogy of Ordinary Chondrites and Implications for Asteroid Spectrophotometry, Icarus, 1991, vol. 90, pp. 107-116.Google Scholar
  31. McSween, H.Y., What We Have Learned about Mars from SNC Meteorites, Meteoritics, 1994, vol. 29, pp. 757-759.Google Scholar
  32. Nash, D.B., Carr, M.H., Gradie, J., et al., Io, in Satellites, Burns, J.A. and Matthews, M.S., Eds., Tucson: Univ. of Arizona Press, 1986, pp. 629-688.Google Scholar
  33. Peale, S., Cassen, P., and Reynolds, R., Melting of Io by Tidal Dissipation, Science, 1979, vol. 203, pp. 892-894.Google Scholar
  34. Pearle, J.C. and Sinton, W.M., Hot Spots on Io, in Satellites of Jupiter, vol. 3, Morrison, D.M., Ed., Tucson: Univ. of Arizona Press, 1982. Translated under the title Sputniki Yupitera, Moscow: Mir, 1986, vol. 3, pp. 107–142.Google Scholar
  35. Pollack, J.B. and Fanale, F., Origin and Evolution of the System of Jovian Satellites, in Satellites of Jupiter, vol. 3, Morrison, D., Ed., Tucson: Univ. of Arizona Press, 1982. Translated under the title Sputniki Yupitera, Moscow: Mir, 1986, vol. 3, pp. 264–304.Google Scholar
  36. Ringwood, A.E., Origin of the Earth and Moon, New York: Springer, 1979.Google Scholar
  37. Ruskol, E.L. and Safronov, V.S., Jupiter Growth as an Essential Factor for the Formation of the Planetary System, Astron. Vestn., 1998, vol. 32, no. 4, pp. 291-300 [Sol. Syst. Res. (Engl. transl.), 1998, vol. 32, no. 4, pp. 255–263 ].Google Scholar
  38. Ryzhenko, B.N. and Kennedy, J.C., The Effect of Pressure on the Eutectic Minima in the System Fe-FeS, Am. J. Sci., 1973, vol. 273, pp. 803-810.Google Scholar
  39. Sanloup, C., Jambon, A., and Giller, P., A Simple Chondritic Model of Mars, Phys. Earth Planet. Inter., 1999, vol. 112, pp. 43-54.Google Scholar
  40. Schubert, G., Stevenson, D.J., and Ellsworth, K., Internal Structures of the Galilean Satellites, Icarus, 1981, vol. 47, pp. 46-59.Google Scholar
  41. Showman, A.P. and Malhotra, R., The Galilean Satellites, Science, 1999, vol. 286, pp. 77-84.Google Scholar
  42. Sohl, F. and Spohn, T., The Interior Structure of Mars: Implications from SNC Meteorites, J. Geophys. Res., 1997, vol. 102E, pp. 1613-1635.Google Scholar
  43. Spencer, J.R. and Schneider, N.M., Io on the Eve of the Galileo Mission, Ann. Rev. Earth Planet. Sci., 1996, pp. 125-190.Google Scholar
  44. Usselman, T.M., Experimental Approach to the State of the Core: Part I. The Liquidus Relations of the FeRich Portion of the Fe-Ni-S System from 30 to 100 kbar, Am. J. Sci., 1975, vol. 275, pp. 278-290.Google Scholar
  45. Vaisburd, S.E., Fizikokhimicheskie svoistva i osobennosti stroeniya sul'fidnykh rasplavov (Physicochemical Properties and Specific Features of the Sulfide Melt Structure), Moscow: Metallurgiya, 1996.Google Scholar
  46. Zharkov, V.N. and Gudkova, T.V., InteriorStructure Models and the Fe/Si Ratios for Mars, Astron. Vestn., 1998, vol. 32, no. 5, pp. 403-412 [Sol. Syst. Res. (Engl. transl.), 1998, vol. 32, no. 5, pp. 355–363].Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2001

Authors and Affiliations

  • O. L. Kuskov
    • 1
  • V. A. Kronrod
    • 1
  1. 1.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations