Journal of Chemical Ecology

, Volume 27, Issue 8, pp 1677–1690 | Cite as

Chemical Composition of Precloacal Secretions of Liolaemus Lizards

  • Carlos A. Escobar
  • Antonieta Labra
  • Hermann M. Niemeyer


Interspecific chemical variation of precloacal pore secretions of Liolaemus lizards was characterized in 20 species, and intraspecific chemical variation was characterized using nine individuals of L. bellii. The latitude (Chile, 18° to 33° South latitude) and altitude (100 to 4350 m.a.s.l.) of the capture sites were recorded, as well as the number of precloacal pores of each lizard. Secretions were analyzed by GC-MS. A total of 49 compounds were found distributed among the 20 species of Liolaemus. Different chemical patterns occurred at intra- and interspecific levels. Compounds belonged to three main families: n-alkanes, long chain carboxylic acids, and steroids. Cholesterol and five carboxylic acids (tetradecanoic, hexadecanoic, hexadecenoic, octadecanoic, and Z-9-octadecenoic) appeared in all species. The number of precloacal pores correlated positively with altitude and negatively with latitude, suggesting that lizards produce more secretions under harsh environments.

Chilean lizards Tropiduridae Liolaemus precloacal pores holocrine glands 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AHERN, D. G., and DOWNING, D. T. 1974. Skin lipids of the Florida indigo snake. Lipids 9:8–14.PubMedGoogle Scholar
  2. ALBERTS, A.C. 1990. Chemical properties of femoral gland secretions in the desert iguana, Dipsosaurus dorsalis. J. Chem. Ecol. 16:13–25.Google Scholar
  3. ALBERTS, A.C. 1991. Phylogenetic and adaptive variation in lizard femoral gland secretions. Feromonal self-recognition in desert iguanas. Copeia 1991:69–79.Google Scholar
  4. ALBERTS, A. C. 1992. Pheromonal self-recognition in desert iguanas. Copeia 1992:229–232.Google Scholar
  5. ALBERTS, A. C., PHILLIPS, J. A., and WERNER, D. I. 1993. Sources of intraspecific variability in the protein composition of lizard femoral gland secretions. Copeia 1993:775–781.Google Scholar
  6. ALBERTS, A. C., SHARP, T. R., WERNER, D. I., and WELDON, P. J. 1992. Seasonal variation of lipids in femoral gland secretions of male green iguanas (Iguana iguana). J. Chem. Ecol. 18:703–712.Google Scholar
  7. ANTONIAZZI, M. M., JARED, C., PELLEGRINI, C. M. R., and MACHA, N. 1993. Epidermal glands in Squamata: Morphology and histochemistry of the precloacal glands in Amphisbaena alba (Amphisbaenia). Zoomorphology (Berlin) 113:199–203.Google Scholar
  8. ANTONIAZZI, M. M., JARED, C., and JUNQUEIRA, L. C. U. 1994. Epidermal glands in Squamata: fine structure of pre-cloacal glands in Amphisbaena alba (Amphisbaenia, Amphisbaenidae). J. Morphol. 221:101–109.Google Scholar
  9. BULL, M. C., GRIFFIN, C. L., and PERKINS, V. 1999. Some properties of a pheromone allowing individual recognition, from the scats of an Australian lizard, Egernia striolata. Acta Ethologica 2:35–42.Google Scholar
  10. BURKEN, R. R., WERTZ, P. W., and DOWNING, T. D. 1985. A survey of polar and nonpolar lipids extracted from snake skin. Biochem. Physiol. 81B:315–318.Google Scholar
  11. CHAUHAN, N. B. 1986a. Histological and structural observations on pre-anal glands of the gekkonid lizard, Hemidacttylus flaviviridis. J. Anat. 144:93–98.PubMedGoogle Scholar
  12. CHAUHAN, N. B. 1986b. A preliminary report on the lipid components of pre-anal gland secretion of lizards Hemidactylus flaviviridis and Uromastix hardwickii. J. Anim. Morphol. Physiol. 33:73–76.Google Scholar
  13. COOPER, W. E. 1996. Chemosensory recognition of familiar and unfamiliar conspecifics by the scincid lizard Eumeces laticeps. Ethology 102:454–464Google Scholar
  14. COOPER, W. E. 1998. Evaluation of the swap and related tests as a bioassay for assessing responses by squamata reptiles to chemical stimuli. J. Chem. Ecol. 24:841–866.Google Scholar
  15. COOPER, W. E., and GARSTKA, W. R. 1987. Lingual responses to chemical fractions of urodaeal glandular pheromones of the skink Eumeces laticeps. J. Exp. Zool. 242:249–253.Google Scholar
  16. COOPER, W. E. J., LÓPEZ, P., and SALVADOR, A. 1994. Pheromones detection in amphisbaenian. Anim. Behav. 47:1401–1411.Google Scholar
  17. COOPER, JR., W. E., VAN WYK, J. H., and MOUTON, P. LE F. N. 1996. Pheromonal detection and sex discrimination of conspecific substrate deposits by the rock-dwelling cordylid lizard, Cordylus cordylus. Copeia 1996:839–845.Google Scholar
  18. DONOSO-BARROS, R. 1966. Reptiles de Chile. Editorial Universitaria, Universidad de Chile, Santiago, Chile. 458 pp.Google Scholar
  19. ETHERIGDE, R. 1995. Redescription of Ctenoblepharys adspersa Tschudi, 1845, and the taxonomy of Liolaeminae (Reptilia: Squamata: Tropiduridae). Amer. Mus. Novitates 3142:1–34.Google Scholar
  20. FONT, E. 1996. Los sentidos químicos de los reptiles. Un enfoque etológico, pp. 197–259, in Colmenares, F. (ed.). Etología, Psicología Comparada y Comportamiento Animal. Madrid: Síntesis Psicológica. Editorial Síntesis S. A.Google Scholar
  21. GRAVES, B. M., and HALPERN, M. 1991. Discrimination of self from conspecific chemical cues in Tiliqua scincoides (Sauria: Scincidae). J. Herpetol. 25:125–126.Google Scholar
  22. JARED, C., ANTONIAZZI, M. M., SILVA, J. R. M. C., and FREYMULLER, E. 1999. Epidermal glands in squamata: Microscopical examination of precloacal glands in Amphisbaena alba (Amphisbaenia, Amphisbaenidae). J. Morphol. 241:197–206.PubMedGoogle Scholar
  23. LABRA, A., and NIEMEYER, H. M. 1999. Intraspecific chemical recognition in the lizard Liolaemus tenuis. J. Chem. Ecol. 25:1799–1811.Google Scholar
  24. LABRA, A., BELTRáN, S., and NIEMEYER, H. M. 2001. Chemical exploratory behavior in the lizard Liolaemus bellii. J. Herpetol. (in press)Google Scholar
  25. LÓPEZ, P., SALVADOR, A., and COOPER, JR., W. E. 1997. Discrimination of self from other males by chemosensory cues in the amphisbaenian Blanus cinereus. J. Comp. Psych. 111:105–109.Google Scholar
  26. MANLY, B. F. J. 1994. Multivariate Statistical Methods. A Primer. Chapman & Hall, London.Google Scholar
  27. MARTíN, J., and LÓPEZ, P. 2000. Chemoreception, symmetry and mate choice in lizards. Proc. R. Soc. Lond. B267:1265–1269.Google Scholar
  28. MARTINS, E. P., and HANSEN, T. F. 1996. The statistical analysis of interspecific data: a review and evaluation of phylogenetic comparative method, pp. 22–75, in E. Martins (ed.). Phylogenies and the Comparative Method in Animal Behavior. Oxford University Press, Oxford.Google Scholar
  29. MASON, R. T. 1992. Reptilian pheromones, pp. 114–228, in C. Gans, and D. Crews (eds.). Hormones, Brain and Behavior. Biology of Reptilia, Vol 18 E. The University Chicago Press, Chicago.Google Scholar
  30. MASON, R. T. 1999. Integrated pest management: The case for pheromonal control of habu (Trimeresurus flavoviridis) and brown tree snakes (Boiga irregularis), pp. 196–205, in G. H. Rodda, Y. Sawai, D. Chiszar, and H. Tanaka (eds.). Problem Snake Management: the Habu and the Brown Tree Snake. Cornell University Press.Google Scholar
  31. MASON, R. T., FALES, H. M., JONES, T. H., PANNELL, L. K., CHINN, J. W., and CREWS, D. 1989. Sex pheromones in snakes. Science 245:290–293.PubMedGoogle Scholar
  32. MASON, R. T., and GUTZKE, W. H. N. 1990. Sex recognition in the leopard gecko, Eublepharis macularius (Sauria: Gekkonidae) possible mediation by skin-derived semiochemicals. J. Chem. Ecol. 16:27–36.Google Scholar
  33. NICOLAIDES, N. 1974. Skin lipids: their biochemical uniqueness. Science 186:19–26.PubMedGoogle Scholar
  34. PESYNA, G. M., VENKATARAGHAVAN, R., DAYRINGER, H. E., and MCLAFFERTY, F. W. 1976. Probability based matching system using a large collection of reference mass spectra. Anal. Chem. 48:1362–1368.Google Scholar
  35. SCHULTE, J. A., MACEY, J. R., ESPINOZA, R. E., and LARSON, A. 2000. Phylogenetic relationships in the iguanid lizard genus Liolaemus: multiple origins of viviparous reproduction and evidence for recurring Andean vicariance and dispersal. Biol. J. Linnean Soc. 69:75–102.Google Scholar
  36. WELDON, P. J., and BANGALL, D. 1987. A survey of polar and nonpolar skin lipids from lizards by thin-layer chromatography. Comp. Biochem. Physiol. 87B:345–349.Google Scholar
  37. WELDON, P. J., DUNN, B. S., MCDANIEL, C. A., and WERNER, D. I. 1990. Lipids in the femoral gland secretions of the green iguana (Iguana iguana). Comp. Biochem. Physiol. 95B:541–543.Google Scholar
  38. ZAR, J. H. 1984. Biostatistical Analysis. Prentice-Hall International, Englewood Cliffs, New Jersey, 718 pp.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Carlos A. Escobar
    • 1
  • Antonieta Labra
    • 1
  • Hermann M. Niemeyer
    • 1
  1. 1.Departamento de Ciencias Ecológicas, Facultad de CienciasUniversidad de ChileSantiagoChile

Personalised recommendations