Advertisement

Solar System Research

, Volume 35, Issue 3, pp 227–233 | Cite as

On the Origins of Earth-Approaching Asteroids

  • D. F. Lupishko
  • T. A. Lupishko
Article

Abstract

It is generally accepted that Main-Belt asteroids (MBAs) and nuclei of no longer active comets are the sources that replenish the Amor, Apollo, and Aten groups of asteroids, i.e., Earth-approaching asteroids (EAAs). Investigations of the dynamics of EAAs and numerical modeling of their orbital motion have shown that the so-called resonance mechanism of the replenishment of the EAA population with objects from the Main Belt is quite sufficient for its maintenance. In this paper, we compare the physical properties of EAAs and MBAs (and, partly, cometary nuclei) in an effort to gain an understanding of whether the physical properties of EAAs can tell us anything about their origins. The principal result of the performed analysis is the conclusion that the small dimensions of EAAs; their MBA-identical set of taxonomic classes; the identical mineralogy and preponderance of differentiated compositions among EAAs; and their, on average, MBA-identical shape, rotation, optical properties, and surface structure are all convincing proof that the Main Belt is the dominant source of the replenishment of the EAA population and that the share of cometary-origin EAAs does not exceed 10%. The most likely candidates for cometary-origin objects among EAAs are 2100 Ra-Shalom, 2101 Adonis, 2201 Oljato, 2212 Hephaistos, 3200 Phaethon, 3552 Don Quixote, and 4015 Wilson–Harrington.

Keywords

Optical Property Numerical Modeling Surface Structure Small Dimension Dominant Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Bell, J.F., Davis, D.R., Hartmann, W.K., and Gaffey, M.J., Asteroids: The Big Picture, in Asteroids II, Binzel, R.P., Gehrels, T., and Matthews, M.S., Eds., Tucson: Univ. of Arizona Press, 1989, pp. 921-945.Google Scholar
  2. Binzel, R.P., Farinella, P., Zappala, V., and Cellino, A., Asteroid Rotation Rates: Distribution and Statistics, in Asteroids II, Binzel, R.P., Gehrels, T., and Matthews, M.S., Eds., Tucson: Univ. of Arizona Press, 1989, pp. 416-441.Google Scholar
  3. Binzel, R.P., Xu Shui, Bus, S.J., and Bowell, E., Origin for the Near-Earth Asteroids, Science, 1992, vol. 257, pp. 779-782.Google Scholar
  4. Cruikshank, D.P., Hartmann, W.K., Tholen, D., and Bell, J., An Olivine-Rich Earth-Crossing Asteroid: Source of Pallasites?, Abstr. Lunar Planet. Sci. Conf. XVI, 1985, p. 160.Google Scholar
  5. Cruikshank, D.P., Tholen, D., Hartmann, W.K., et al., Three Basaltic Earth-Approaching Asteroids and the Source of the Basaltic Meteorites, Icarus, 1991, vol. 89, pp. 1-13.Google Scholar
  6. Degewij, J. and Tedesco, E.F., Do Comets Evolve into Asteroids? Evidence from Physical Studies, in Comets, Wilkening, L.L., Ed., Tucson: Univ. of Arizona Press, 1982, pp. 665-695.Google Scholar
  7. Farinella, P., Gonczi, R., Froeschle, Ch., and Froeschle, C., The Injection of Asteroid Fragments into Resonances, Icarus, 1993, vol. 101, pp. 174-187.Google Scholar
  8. Farinella, P., Froeschle, C., and Gonczi, R., Meteorite Delivery and Transport, in Asteroids, Comets, Meteors 1993, Milani, A., Di Martino, M., and Cellino, A., Eds., Proc. 160 Symp. IAU, Belgirate (Italy), 1993, June 1418, 1994, pp.205-222.Google Scholar
  9. Froeschle, Ch. and Morbidelli, A., The Secular Resonances in the Solar System, in Asteroids, Comets, Meteors 1993, Milani, A., Di Martino, M., and Cellino, A., Eds., Proc. 160 Symp. IAU, Belgirate (Italy), 1993, June 1418, 1994, pp. 189-204.Google Scholar
  10. Froeschle, Ch., Michel, P., and Froeschle, C., Dynamical Transport Mechanisms of Planet-Crossing Bodies, in Evolution and Source Regions of Asteroids and Comets, Svoren, J., Pittich, E.M., and Richman, H., Eds., Proc. 173 Coll. IAU, Tatranska Lomnica (Slovak Republic), 1998, Aug. 24–28, 1999, pp. 87-96.Google Scholar
  11. Gaffey, M.J., Reed, K.I., and Kelley, M.S., The Relationship of E-Type Apollo Asteroid 3103 (1982 BB) to the Enstatite Achondrite Meteorites and Hungaria Asteroids, Icarus, 1992, vol. 100, pp. 95-109.Google Scholar
  12. Gladman, B.J., Migliorini, F., Morbidelli, A., et al., Dynamical Lifetime of Objects Injected into Asteroid Belt Resonances, Science, 1997, vol. 277, pp. 197-201.Google Scholar
  13. Hartmann, W.K. and Tholen, D.J., Comet Nuclei and Trojan Asteroids: A New Link and the Possible Mechanism for Comet Splitting, Icarus, 1990, vol. 86, no. 2, pp. 448-454.Google Scholar
  14. Hartmann, W.K., Tholen, D.J., and Cruikshank, D.P., The Relationship of Active Comets, “Extinct” Comets, and Dark Asteroids, Icarus, 1987, vol. 69, no. 1, pp. 33-50.Google Scholar
  15. Helfenstein, P. and Veverka, J., Physical Characterization of Asteroid Surfaces from Photometric Analysis, in Asteroids II, Binzel, R.P., Gehrels, T., and Matthews, M.S., Eds., Tucson: Univ. of Arizona Press, 1989, pp. 557-593.Google Scholar
  16. Holman, M. and Wisdom, J., Meteorite Delivery from the 3: 1 Kirkwood Gap, Bull. Am. Astron. Soc., 1994, vol. 26, p. 1168.Google Scholar
  17. Levin, B.Yu. and Simonenko, A.N., On the Implausibility of a Cometary Origin for Most Apollo—Amor Asteroids, Icarus, 1981, vol. 47, pp. 487-491.Google Scholar
  18. Lupishko, D.F. and Bel'skaya, I.N., Asteroid Surface Materials, Astron. Vestn., 1991, vol. 25, no. 1, pp. 5-26.Google Scholar
  19. Lupishko, D.F. and Di Martino, M., Physical Properties of Near-Earth Asteroids, Planet. Space Sci., 1998, vol. 46, pp. 47-74.Google Scholar
  20. Luu, J. and Jewitt, D., On the Relative Number of C Types and S Types among Near-Earth Asteroids, Astron. J., 1989, vol. 98, pp. 1905-1911.Google Scholar
  21. Luu, J., Comets Disguised as Asteroids, Publ. Astron. Soc. Pacif., 1994, vol. 106, no. 699, pp. 425-435.Google Scholar
  22. Magri, C., Ostro, S.J., Rosema, K.D., et al., Mainbelt Asteroids: Results of Arecibo and Goldstone Radar Observations of 37 Objects during 1980-1995, Icarus, 1999, vol. 140, pp. 379-407.Google Scholar
  23. McFadden, L.A., Gaffey, M.J., and McCord, T.B., Near-Earth Asteroids: Possible Sources from Reflectance Spectroscopy, Science, 1985, vol. 229, pp. 160-163.Google Scholar
  24. Menichella, M., Paolicchi, P., and Farinella, P., The Main Belt as a Source of Near-Earth Asteroids, Earth, Moon, Planets, 1996, vol. 72, pp. 133-149.Google Scholar
  25. Öpik, E.J., The Stray Bodies in the Solar System: Part I. Survival of Cometary Nuclei and Asteroids, Adv. Astron. Astrophys., 1963, vol. 2, pp. 219-262.Google Scholar
  26. Ostro, S.J., Campbell, D.B., Chandler, J.F., et al., Asteroid 1986 DA: Radar Evidence for a Metallic Composition, Science, 1991, vol. 252, pp. 1399-1404.Google Scholar
  27. Rabinowitz, D.L., Observations Constraining the Origins of Earth-Approaching Asteroids, in Completing the Inventory of the Solar System, Rettig, T. and Hahn, J., Eds., Astron. Soc. Pacif. Conf., 1996, ser. 107, pp. 13-28.Google Scholar
  28. Scholl, H. and Froeschle, Ch., The ν6 Secular Resonance Region near 2 AU: A Possible Source of Meteorites, Astron. Astrophys., 1991, vol. 245, pp. 316-321.Google Scholar
  29. Tedesco, E.F. and Gradie, J., Discovery of M Class Objects among the Near-Earth Asteroid Population, Astron. J., 1987, vol. 93, no. 3, pp. 738-745.Google Scholar
  30. Weissman, P.R., A'Hearn, M.F., McFadden, L.A., and Rickman, H., Evolution of Comets into Asteroids, in Asteroids II, Binzel, R.P., Gehrels, T., and Matthews, M.S., Eds., Tucson: Univ. of Arizona Press, 1989, pp. 880-920.Google Scholar
  31. Weissman, P.R. and Levinson, H.F., Origin and Evolution of the Unusual Object 1996 PW: Asteroids from the Oort Cloud?, Astrophys. J., 1997, vol. 488, no. 2, p. L133-L136.Google Scholar
  32. Wetherill, G.W., Where Do Apollo Objects Come from?, Icarus, 1988, vol. 76, pp. 1-18.Google Scholar
  33. Whipple, F.L., The Rotation of Comet Nuclei, in Comets, Wilkening, L.L., Ed., Tucson: Univ. of Arizona Press, 1982, pp. 227-250.Google Scholar
  34. Wisdom, J., Chaotic Behavior and the Origin of the 3/1 Kirkwood Gap, Icarus, 1983, vol. 56, pp. 51-74.Google Scholar
  35. Wisdom, J., Meteorites May Follow a Chaotic Route to Earth, Nature, 1985, vol. 315, pp. 731-733.Google Scholar
  36. Zappala, V., Cellino, A., Barucci, A.M., et al., An Analysis of the Amplitude-Phase Relationship among Asteroids, Astron. Astrophys., 1990, vol. 231, pp. 548-560.Google Scholar
  37. Zellner, B., Asteroid Taxonomy and the Distribution of the Compositional Types, in Asteroids, Gehrels, T., Ed., Tucson: Univ. of Arizona Press, 1979, pp. 783-806.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2001

Authors and Affiliations

  • D. F. Lupishko
    • 1
  • T. A. Lupishko
    • 1
  1. 1.Astronomical ObservatoryKarazin Kharkov National UniversityUkraine

Personalised recommendations