Advertisement

Neurophysiology

, Volume 33, Issue 1, pp 48–52 | Cite as

Slow Oscillations of the Purkinje Cell Firing Rate Induced by Electrical Stimulation of the Locus Coeruleus in Rats

  • M. Ćulić
  • J. Šaponjić
  • B. Janković
  • A. Kalauzi
  • A. Jovanović
Article

Abstract

In anesthetized Wistar rats, we studied the effect of electrical stimulation of the locus coeruleus (LC) on the firing rates of Purkinje cells using spectral analysis. The frequency of extracellularly recorded activity of Purkinje cells was measured before and during the 1st, 5th, 6th, and 11th min after cessation of 10-sec-long LC stimulations. Spectral analysis of the Purkinje cell firing rates (imp./bin, the bin duration was 2-8 sec) for 60- to 120-sec-long intervals was performed using fast Fourier transformation after digital conversion of unitary spikes. Mean power spectra of the Purkinje cell firing rates (derived from 8-sec-long consecutive epochs at a sampling rate of 256 sec-1) showed an increase in the slow frequency range (0.1-1.0 Hz) after LC stimulation, particularly due to the slowest components (below 0.5 Hz). This effect lasted more than 1 min and usually less than 6 min after cessation of LC stimulation and could be interpreted as the development of slow oscillations in the Purkinje cell firing. Our results suggest that slow oscillations of the firing rate of cerebellar output neurons, induced by LC stimulation, reflect a specific coordination of the cerebellar neuronal activities (important for a central norepinephrine influence) in regulation of different pathological states.

Purkinje cell firing rates spectral characteristics locus coeruleus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    B. J. Hoffer, G. R. Siggins, and F. E. Bloom, “Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. II. Sensitivity of Purkinje cells to norepinephrine and related substances administered by microiontophoresis,” Brain Res., 25, 523-534 (1971).Google Scholar
  2. 2.
    H. C. Moises and W. J. Woodward, “Potentiation of GABA inhibitory action in cerebellum by locus coeruleus stimulation,” Brain Res., 182, 327-344 (1980).Google Scholar
  3. 3.
    K. D. Parfitt, R. Freedman, and P. C. Bickford-Wimer, “Electrophysiological effects of locally applied noradrenergic agents at cerebellar Purkinje neurons: receptor specificity,” Brain Res., 462, 242-251 (1988).Google Scholar
  4. 4.
    M. G. Boyeson, K. A. Krobert, C. M. Grade, and P. J. Scherer, “Unilateral but not bilateral locus coeruleus lesions facilitate recovery from sensorimotor cortex injury,” Pharmacol. Biochem. Behav., 43, 771-777 (1992).Google Scholar
  5. 5.
    M. G. Boyeson, K. A. Krobert, P. J. Scherer, and C. M. Grade, “Reinstatement of motor deficit in recovered brain-injured animals: the role of cerebellar norepinephrine,” Restorat. Neurol. Neurosci., 5, 283-290 (1993).Google Scholar
  6. 6.
    M. G. Boyeson, J. L. Jones, and R. L. Harmon, “Sparing of motor function after cortical injury,” Arch. Neurol., 51, 405-414 (1994).Google Scholar
  7. 7.
    M. Ćulić, J. Šaponjić, B. Janković, and Lj. Rakić, “Activity of the cat cerebellar neurons in penicillin epilepsy and amphetamine treatment,” Arch. Ital. Biol., 130, 167-177 (1992).Google Scholar
  8. 8.
    M. Ćulić, J. Šaponjić, B. Janković, and Lj. Rakić, “Influence of locus coeruleus on an acute model of epilepsy,” in: Motor Control, Vol. VII, D. G. Stuart, G. N. Gantchev, V. S. Gurfinkel, and M. Wiesendanger (eds.), Motor Control Press, Tucson (1996), pp. 259-262.Google Scholar
  9. 9.
    M. Ćulić, J. Šaponjiæ, B. Janković, and Lj. Rakić, “Amphetamine and haloperidol modulatory effects on Purkinje cell activity and on EEG power spectra in the acute rat model of epilepsy,” Neurosci. Lett., 182, 259-262 (1994).Google Scholar
  10. 10.
    M. Ćulić, J. Šaponjić, B. Janković, and A. Kalauzi, “Modulation of Purkinje cell activity after brain damage in the rat model of epilepsy,” Arch. Biol. Sci., 50, 227-230 (1998).Google Scholar
  11. 11.
    M. Ćulić, J. Šaponjić, A. Jovanović, and B. Janković, “Dynamics of cerebellar neuronal discharges after locus coeruleus stimulation in rat,” in: Fifth IBRO World Congress of Neuroscience, Abstract Book, Jerusalem (1999), p. 57.Google Scholar
  12. 12.
    G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press, New York (1983).Google Scholar
  13. 13.
    P. Bickford-Wimer, K. Pang, G. M. Rose, and G. A. Gerhart, “Electrically-evoked release of norepinephrine in the rat cerebellum: an in vivo electrochemical and electrophysiological study,” Brain Res., 558, 305-311 (1991).Google Scholar
  14. 14.
    J. Ŝaponjić, M. Šulić, B. Jankoviæ, et al.,”Modulation of Purkinje cell activity in the acute rat model of epilepsy,” Eur. J. Neurosci., Suppl. 9, 134 (1996).Google Scholar
  15. 15.
    M. Šulić, J. Ŝaponjić, B. Janković, et al., “Spectral characteristics of Purkinje cell firing rate in a rat model of epilepsy,” Eur. J. Neurosci., 12, Suppl. 11, 209 (2000).Google Scholar
  16. 16.
    K. G. Keating and W. T. Thach, “Nonclock behavior of inferior olive neurons: Interspike interval of Purkinje cell complex spike discharge in the awake behaving monkey is random,” J. Neurophysiol., 73, 1329-1340 (1995).Google Scholar
  17. 17.
    E. J. Lang, I. Sugihara, J. P. Welsh, and R. Llinas, “Patterns of spontaneous Purkinje cell complex spike activity in the awake rat,” J. Neurosci., 19, 2728-2739 (1999).Google Scholar
  18. 18.
    P. C. Bickford, W. F. Mosimann, B. J. Hoffer, and R. Freedman, “Effects of the selective noradrenergic neurotoxin DSP-4 on cerebellar Purkinje neuron electrophysiology,” Life Sci., 34, 731-741 (1984).Google Scholar
  19. 19.
    C. G. Leung and P. Mason, “Spectral analysis of arterial blood pressure and raphe magnus neuronal activity in anesthetized rats,” Am. J. Physiol., 271 (Regulat. Integrat. Comp. Physiol., 40), R483-R489 (1996).Google Scholar
  20. 20.
    H. S. Orer, M. E. Clement, S. M. Barman, et al., “Role of serotonergic neurons in the maintenance of the 10-Hz rhythm in sympathetic nerve discharge,” Am. J. Physiol., 270 (Regulat. Integrat. Comp. Physiol., 39), R174-R181 (1996).Google Scholar
  21. 21.
    D. N. Ruskin, D. A. Bergstrom, Y. Kanaoke, et al., “Multisecond oscillations in firing rate in the basal ganglia: Robust modulation by dopamine receptor activation and anesthesia,” J. Neurophysiol., 81, 2046-2055 (1999).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • M. Ćulić
    • 1
  • J. Šaponjić
    • 1
  • B. Janković
    • 2
  • A. Kalauzi
    • 2
  • A. Jovanović
    • 3
  1. 1.Institute for Biological ResearchBelgradeYugoslavia
  2. 2.Center for Multidisciplinary StudiesUniversity of BelgradeYugoslavia
  3. 3.School of MathematicsUniversity of BelgradeYugoslavia

Personalised recommendations