Journal of Chemical Ecology

, Volume 27, Issue 9, pp 1805–1819 | Cite as

Task-Related Environment Alters the Cuticular Hydrocarbon Composition of Harvester Ants

  • Diane Wagner
  • Madeleine Tissot
  • Deborah Gordon


Within a colony of harvester ants (Pogonomyrmex barbatus), workers in different task groups differ in the hydrocarbon composition of the cuticle. Foragers and patrollers, which spend extended periods of time outside the nest, have a higher proportion of saturated, unbranched hydrocarbons (n-alkanes) on the cuticle than nest maintenance workers, which spend only short periods of time outside the nest. We tested whether these task-related differences in ant cuticular chemistry arise from exposure to conditions outside the nest. Nest maintenance workers experiencing daily, short-term outside exposure developed a higher proportion of n-alkanes on the cuticle than workers kept inside the lab. Independent manipulations of ultraviolet radiation, relative humidity, and temperature revealed that only the combination of high temperature (ca. 38°C) and low relative humidity (ca. 8%) increased the proportion of cuticular n-alkanes. The results indicate that warm dry conditions, such as those encountered when an ant leaves the nest, trigger changes in cuticular chemistry.

Cuticular hydrocarbons Formicidae Pogonomyrmex barbatus n-alkanes task 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BONAVITA-COUGOURDAN, A., CLEMENT, J. L., and LANGE, C. 1987. Nestmate recognition: The role of cuticular hydrocarbons in the ant Camponotus vagus Scop. J. Entomol. Sci. 22:1–10.Google Scholar
  2. BONAVITA-COUGOURDAN, A., CLEMENT, J. L., and LANGE,C. 1993. Functional subcaste discrimination (foragers and brood-tenders) in the ant Camponotus vagus Scop.: Polymorphism of cuticular hydrocarbon patterns. J. Chem. Ecol. 19:1461-1477.Google Scholar
  3. FRANKS, N. R., TOFTS, C., and SENDOVA-FRANONAVITA, A. B. 1997. Studies in division of labor: Neither physics nor stamp collecting. Anim. Behav. 53:219-224.Google Scholar
  4. GIBBS, A. G. 1998. The role of lipid physical properties in lipid barriers. Am. Zool. 38:268-279.Google Scholar
  5. GIBBS, A., and MOUSSEAU, T. A. 1994. Thermal acclimation and genetic variation in cuticular lipids of the lesser migratory grasshopper (Melanoplus sanguinipes): Effects of lipid composition on biophysical properties. Physiol. Zool. 67:1523-1543.Google Scholar
  6. GIBBS, A., and POMONIS, J. G. 1995. Physical properties of insect curticular hydrocarbons: Model mixtures and lipid interactions. Comp. Biochem. Physiol. B 112:667-672.Google Scholar
  7. GORDON, D. M. 1986. The dynamics of the daily round of the harvester ant colony (Pogonomyrmex barbatus). Anim. Behav. 34:1402-1419.Google Scholar
  8. GORDON, D. M. 1989. Dynamics of task switching in harvester ants. Anim. Behav. 38:194-204.Google Scholar
  9. GORDON, D. M. 1995. The development of an ant colony's foraging range. Anim. Behav. 49:649-659.Google Scholar
  10. GORDON, D. M. 1996. The organization of work in social insect colonies. Nature 380:121-124.Google Scholar
  11. GORDON, D. M., and KULIG, A.W. 1996. Founding, foraging, and fighting: Colony size and the spatial distribution of harvester ant nests. Ecology 77:2393-2409.Google Scholar
  12. GORDON, D. M., and MEHDIABADI, N. J. 1999. Encounter rate and task allocation in harvester ants. Behav. Ecol. Sociobiol. 45:370-377.Google Scholar
  13. HADLEY, N. F. 1978. Cuticular permeability of dessert tenebrionid beetles: correlations with epicuticular hydrocarbon composition. Insect Biochem. 8:17-22.Google Scholar
  14. HADLEY, N. F. 1994. Water Relations of Terrestrial Arthropods. Academic Press, San Diego.Google Scholar
  15. HAVERTY, M. I., GRACE, J. K., NELSON, L. J., and YAMAMOTO, R. T. 1996. Intercaste, intercolony, and temporal variation in cuticular hydrocarbons of Coptermes formosanus Shiraki (Isoptera: Rhinotermitidae). J. Chem. Ecol. 22:1813-1834.Google Scholar
  16. HOWARD, R.W., HOWARD, C. D., and COLQUHOUN, S. 1995. Ontogenetic and envrionmentally induced changes in cuticular hydrocarbons of Oryzaephilus surinamensis (Coleoptera: Cucujidae). Ann Entomol. Soci. Am. 88:485-495.Google Scholar
  17. HOWARD, R.W., MCDANIEL, C. A., NELSOM, D. R., BLOMQUIST, G. J., GELBAUM, L. T., and ZALKOW, L. H. 1982. Cuticular hydrocarbons of Reticulitermes virginicus (Banks) and their role as potential species and caste-recognition cues. J. Chem. Ecol. 8:1227-1239Google Scholar
  18. KAIB, M., EISERMANN, B., SCHOETERS, E., BILLEN, J., FRANKE, S., and FRANCKE, W. 2000. Taskrelated variation of postpharyngeal and cuticular hydrocarbon compositions in the ant Myrmicaria eumenoides. J. Comp. Physiol. A 186:939-948.Google Scholar
  19. LAHAV, S., SOROKER, V., and HEFETZ, A. 1999. Direct behavioral evidence for hydrocarbons as ant recognition discriminators. Naturwissenschaften 86:246-249.Google Scholar
  20. MACKAY, W. P. 1981. Acomparison of the nest phenologies of three species of Pogonomymex harvester ants. Psyche 88:25-75.Google Scholar
  21. MACKAY, W. P. 1983. Stratification of workers in harvester ant nests (Hymenoptera: Formicidae). J. Kansas Entomol. Soc. 56:538-542.Google Scholar
  22. NELSON, D. R., FATLAND, C. L., HOWARD, R. W., MCDANIEL, C. A., and BLOMQUIST, F. J. 1980. Re-analysis of the cuticular methylalkanes of Solenopsis invicta and S. richteri. Insect Biochem. 10:409-418.Google Scholar
  23. NELSON, D. R., TISSOT, M., NELSON, L. J., FATLAND, C. L., and GORDON, D. M. In press. Novel esters and hydrocarbons in the cuticular surface lipids of the red harvester ant, Pogonomyrmex barbatus. Comp. Biochem. Physiol. B. Google Scholar
  24. NIELSEN, J., BOOMSMA, J. J., OLDHAM, N. J., PETERSEN, H. C., and MORGAN, E. D. 1999. Colony-level and season-specific variation in cuticular hydrocarbon profiles of individual workers in the ant Formica truncorum. Insectes Sociaux 46:58-65.Google Scholar
  25. NOWBAHARI, E., LENOIR, A., CLEMENT, J. L., LANGE, C., BAGNERES, A. G., and JOULIE, C. (1990) Individual, geographical and experimental variation of cuticular hydrocarbons of the ant Cataglyphis cursor (Hymenoptera: Formicidae): Their use in nest and subspecies recognition. Biochem. Syst. Ecol. 18:63-73.Google Scholar
  26. OBIN, M. S. 1986, Nestmate recognition cues in laboratory and field colonies of Solenopsis invicta Buren (Hymenoptera: Formicidae): Effect of environment and role of cuticular hydrocarbons. J. Chem.Ecol. 12: 1965-1975.Google Scholar
  27. PAGE, R. E., METCALF, R. A., METCALF, R. L., ERICKSON, E. H., and LAMPMAN, R. L. 1991. Extractable hydrocarbons and kin recognition in honeybee (Apis mellifera). J. Chem. Ecol. 17:745-756.Google Scholar
  28. ROSS, K. G., VANDERMEER, R. K., FLETCHER, D. J. C., and VARGO, E. L. 1987. Biochemical phenotypic and genetic studies of two introduced fire ants and their hybrid (Hymenoptera: Formicidae). Evolution 41:280-293.Google Scholar
  29. ROURKE, B. C., and GIBBS, A. G. 1999. Effects of lipid phase transitions on cuticular permeability: Model membrane and in situ studies. J. Exp. Biol. 202:3255-3262.Google Scholar
  30. SMITH, R. K., and TAYLOR, O. R. 1990. Unsaturated extracted hydrocarbon caste differences between European queen and worker honey bees, Apis mellifera L. (Hymenoptera: Apidae). J. Kansas Entomol. Soc. 63:369-374.Google Scholar
  31. THOMAS, M. L., PARRY, L. J., ALLAN, R. A., and ELGAR, M. A. 1999. Geographic affinity, cuticular hydrocarbons and colony recognition in the Australian meat ant Iridomyrmex purpureus. Naturwissenschaften 86:87-92.Google Scholar
  32. TOOLSON, E. C. 1984. Interindividual variation in epicuticular hydrocarbon composition and water loss rates of the cicada Tibicen dealbatus (Homoptera: Cicadidae). Physiol. Zool. 57:550-556.Google Scholar
  33. TSCHINKEL, W. R. 1999. Sociometry and sociogenesis of colonies of the harvester ant, Pogonomyrmex badius: Distribution of workers, brood and seeds within the nest in relation to colony size and season. Ecol. Entomol. 24:222-230.Google Scholar
  34. VANDERMEER, R. K., LOFGREN, C. S., and ALVAREZ, F. M. 1985. Biochmical evidence for hybridization in fire ants. Florida Entomol. 68:501-506.Google Scholar
  35. VANDERMEER, R. K., SALIWANCHIK, D., and LAVINE, B. 1989. Temporal changes in colony cuticular hydrocarbon patterns of Solenopsis invicta: Implications for nestmate recognition. J. Chem. Ecol. 15:2115-2125.Google Scholar
  36. WAGNER, D., BROWN, M. J. F., BROUN, P., CUEVAS, W., MOSES, L. E., CHAO, D. L., and GORDON, D. M. 1998. Task-related differences in the cuticular hydrocarbon composition of harvester ants, Pogonomyrmex barbatus. J. Chem. Ecol. 24:2021-2037.Google Scholar
  37. WAGNER, D., TISSOT, M., CUEVAS, W., and GORDO N, D. 2000. Harvester ants utilize cuticular hydrocarbons in nestmate recognition. J. Chem. Ecol. 26:2245-2257.Google Scholar
  38. WHITFORD, W. G., JOHNSON, P., and RAMIREZ, J. 1976. Comparative ecology of the harvester ants Pogonomyrmex barbatus (F. Smith) and Pogonomyrmex rugosus (Emery). Insectes Sociaux 23:117-132.Google Scholar
  39. WILSON, E. O. 1971. The Insect Societies. Belknap Press, Cambridge.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Diane Wagner
    • 1
  • Madeleine Tissot
    • 2
  • Deborah Gordon
    • 2
  1. 1.Department of Biological SciencesUniversity of NevadaLas VegasUSA
  2. 2.Department of Biological SciencesStanford UniversityStanford

Personalised recommendations