Journal of Chemical Ecology

, Volume 27, Issue 9, pp 1749–1762 | Cite as

Interactions of Aphid Herbivory and Nitrogen Availability on the Total Foliar Glycoalkaloid Content of Potato Plants

  • D. A. Fragoyiannis
  • R. G. Mckinlay
  • J. P. F. D'Mello


In plant growth room (PGR) and open-air pot (OAP) experiments, potato cvs King Edward and Maris Piper were grown under two nitrogen levels or two different nitrogen release patterns. Plants were subjected to infestation by peach potato aphids Myzus persicae (Homoptera: Aphididae). Total glycoalkaloid (GA) levels were measured in the foliage of both infested and non-infested plants, before, during and after aphid infestation. In the PGR experiment, aphid infestation reduced the amounts of total GAs in both cultivars. This reduction is attributed to the sugar deficiency induced in the plants owing to the dense aphid colonization. Results from the OAP experiment showed a temporal increase of GAs produced by potato cv. King Edward plants subjected to aphid infestation. Elevated amounts of nitrogen in the nutrient solutions (PGR experiment) reduced total GAs, while no differences were observed between manure and fertilizer treated plants (OAP experiment). It is concluded that the source of available nitrogen does not affect foliar GA synthesis in potatoes, and as a consequence, does not affect its endogenous chemical defense against insect herbivory. The case for insect-induced chemical defense mechanisms as triggered by low rates of aphid infestation is discussed.

Aphid Aphididae Myzus persicae potato Solanum tuberosum glycoalkaloids solanine chaconine insect herbivory nitrogen chemical defense 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BALDWIN, I. T. 1989. The mechanism of damage-induced alkaloids in wild tobacco. J. Chem. Ecol. 15:1661–1680.Google Scholar
  2. BALDWIN, I. T., SIMS C. L., and KEAN S. E. 1990. The reproductive consequences associated with inducible alkaloidal responses in wild tobacco. Ecology 71:252-262.Google Scholar
  3. BIRCH, A. N. E., GRIFFITHS, D. W., HOPKINS, R. J., SMITH, W. H. M., and MCKINLAY, R. G. 1992. Glucosinolate responses of swede, kale, forage and oilseed rape to root damage by turnip root fly (Delia floralis) larvae. J. Sci. Food Agric. 60:1-9.Google Scholar
  4. FRAGOYIANNIS, D. A. 1999. Interaction effects between the peach potato aphid Myzus persicae and secondary plant metabolites occurring in potato Solanum tuberosum L. Ph.D. Thesis. The University of Edinburgh.Google Scholar
  5. GIANOLI, E., and NIEMEYER, H. M. 1997a. Characteristics of hydroxamic acid induction in wheat triggered by aphid infestation. J. Chem. Ecol. 23:2695-2705.Google Scholar
  6. GIANOLI, E., and NIEMEYER, H. M. 1997b. Lack of costs of herbivory-induced defenses in a wild wheat: Integration of physiological and ecological approaches. Oikos 80:269-275.Google Scholar
  7. HALL, D. A., and SMITH, C. A. 1994. An evaluation of perlite-based substrates for ornamental pot plant production. Acta Horticulturae 361:486-490.Google Scholar
  8. HELLENäS, K. E. 1986. A simplified procedure for quantification of potato glycoalkaloids in tuber extracts by HPLC; comparison with ELISA and a colorimetric method. J. Sci. Food Agric. 37:776-782.Google Scholar
  9. HLYWKA, J. J., STEPHENSON, G. R., SEARS, M. K., and YADA, R. Y. 1994. Effects of insect damage on glycoalkaloid content in potatoes (Solanum tuberosum). J. Agric. Food Chem. 42:2545-2550.Google Scholar
  10. JADHAV, S. J., SHARMA, R. P., and SALUNKHE, D. K. 1981. Naturally occuring toxic alkaloids in foods. CRC Crit. Rev. Toxicol. 9:21-67.Google Scholar
  11. KIMMINS, F. M., and TJALLINGII, W. F. 1985. Ultrastructure of sieve element penetration by aphid stylets during electrical recording. Entomol. Exp. Appl. 39:135-141.Google Scholar
  12. LLEWELLYN, M., RASHID, R., and LECKSTEIN, P. 1974. The ecological energetics of the willow aphid, Tuberolachnus salignus (Gmelin): Honeydew production. J. An. Ecol. 43:19-29.Google Scholar
  13. MILES, P. W. 1989. Specific responses and damage caused by Aphidoidea, pp. 23-47, in A. K. Minks and P. Harrewijn (eds.). Aphids Their Biology, Natural Enemies and Control. 2C. Elsevier Amsterdam.Google Scholar
  14. NAIR, P. M., BEHERE, A. G., and RAMASWAMY, N. K. 1981. Glycoalkaloids of Solanum tuberosum Linn. J. Sci. Ind. Res. 40:529-535.Google Scholar
  15. OLSSON, K. 1986. The influence of genotype on the effects of impact damage on the accumulation of glycoalkaloids in potato tubers. Potato Res. 29:1-12.Google Scholar
  16. OSMAN, S. F., and ZACHARIUS, R. M. 1979. Biosynthesis of potato glycoalkaloids. Am. Potato J. 56:475.Google Scholar
  17. POLLARD, D. G. 1973. Plant penetration by feeding aphids. Bull. Ent. Res. 62:631-714.Google Scholar
  18. RAMASWAMY, N. K., BEHERE, A. G., and NAIR, P. M. 1976. A novel pathway for the synthesis of solanidine in the isolated chloroplast from greening potatoes. Eur. J. Biochem. 67:275-282.Google Scholar
  19. SCHEPERS, A. 1989. Control of aphids; chemical control, pp. 89-122, in A. K. Minks and P. Harrewijn (eds.). Aphids Their Biology, Natural Enemies and Control. 2C. Elsevier Amsterdam.Google Scholar
  20. SPILLER, N. J., KIMMINS, F. M., and LLEWELLYN, M. 1985. Fine structure of aphid stylet pathways and its use in host plant resistance studies. Entomol. Exp. Appl. 38:293-295.Google Scholar
  21. TALLAMY, D. W., and MCLAUD, E. S. 1991. Squash beetles, Cucumber beetles, and inducible cucumber responses, p. 431, in D. W. Tallamy and M. J. Raupp (eds.). Phytochemical Induction by Herbivores. Wiley, New York.Google Scholar
  22. ZANGERL, A. R. 1990. Furanocoumarin induction in wild parsnip: Evidence for an induced defense against herbivores. Ecology 71:192-1932.Google Scholar
  23. ZANGERL, A. R., and BERENBAUM, M. R. 1995. Spatial temporal and environmental limits on xanthotoxin induction in wild parsnip foliage. Chemoecology 5(6):37-42.Google Scholar
  24. ZULLO, M. A. T., TEIXEIRA, J. P. F., SPOLADORE, D. S., LOURENCAO, A. L., and ARANHA, C. 1984. Content of glycoalkaloids in Solanum americanum infested by Aphis fabae solanella. Bragantia 43:255-259.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • D. A. Fragoyiannis
    • 1
  • R. G. Mckinlay
    • 2
  • J. P. F. D'Mello
    • 2
  1. 1.Institute of Ecology and Resource ManagementThe University of EdinburghEdinburghUK
  2. 2.Scottish Agricultural CollegeEdinburghUK

Personalised recommendations