Biotechnology Letters

, Volume 23, Issue 9, pp 677–681 | Cite as

Stress effect of ethanol on fermentation kinetics by stationary-phase cells of Saccharomyces cerevisiae

  • Virginie Ansanay-GaleoteEmail author
  • Bruno Blondin
  • Sylvie Dequin
  • Jean-Marie Sablayrolles


When 4% (v/v) ethanol was added progressively to two strains exhibiting different fermentative abilities, K1 (a commercial wine strain) and V5 (a strain derived of a wine yeast), the fermentation rate correlated directly to the ethanol concentration for both strains. In contrast, the effect of sudden addition of 2%, 4% or 6% (v/v) ethanol was different depending on the strain. While the same effect was observed for K1 whatever the way of ethanol addition, V5 required an adaptation period after the shock addition of ethanol.

alcoholic fermentation ethanol stress ethanol tolerance stationary phase wine yeast 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexandre H, Rousseaux I, Charpentier C (1993) Ethanol adaptation mechanisms in Saccharomyces cerevisiae. Biotechnol. Appl. Biochem. 20: 173-183.Google Scholar
  2. Alexandre H, Rousseaux I, Charpentier C (1994) Relationship between ethanol tolerance, lipid composition and plasma membrane fluidity in Saccharomyces cerevisiae and Kloeckera apiculata. FEMS Microbiol. Lett. 124: 17-22.Google Scholar
  3. Bely M, Sablayrolles JM, Barre P (1990) Automatic detection of assimilable nitrogen deficiencies during alcoholic fermentation in oenological conditions. J. Ferment. Bioeng. 70: 246-252.Google Scholar
  4. Brown SW, Oliver SG, Harrison DEF, Righelato RC (1981) Ethanol inhibition of yeast growth and fermentation: differences in the magnitude and complexity of the effect. Eur. J. Appl. Microbiol. Biotechnol. 11: 151-155.Google Scholar
  5. Casey GP, Magnus CA, Ingledew WM (1984) High-gravity brewing: effects of nutrition on yeast composition, fermentative ability and alcohol production. Appl. Environ. Microbiol. 48: 639-646.Google Scholar
  6. D'Amore T, Panchal CJ, Russell I, Stewart GG (1990) A study of ethanol tolerance in yeast. Crit. Rev. Biotechnol. 9: 287-304.Google Scholar
  7. El Haloui N, Picque D, Corrieu G (1988) Alcoholic fermentation in winemaking: on line measurement of density and carbon dioxyde evolution. J. Food. Eng. 8: 17-30.Google Scholar
  8. Holzberg LO, Finn RF, Steinkraus KH (1967) A kinetic study of the alcoholic fermentation of grape juice. Biotechnol. Bioeng. 9: 413-423.Google Scholar
  9. Ingram LO, Buttke TM (1984) Effects of alcohols on microorganisms. Adv. Microb. Physiol. 25: 253-300.Google Scholar
  10. Jones RP, Greenfield PF (1985) Replicative inactivation and metabolic inhibition in yeast ethanol fermentations. Biotechnol. Lett. 7: 223-228.Google Scholar
  11. Kalmokoff ML, Ingledew WM (1985) Evaluation of ethanol tolerance in selected Saccharomyces strains. J. Am. Soc. Brew. Chem. 43: 189-196.Google Scholar
  12. King LM, Schisler DO, Ruocco JJ (1981) Epifluorescent method for detection of nonviable yeast. J. Am. Soc. Brew. Chem. 39: 52-54.Google Scholar
  13. Leão C, Van Uden N (1982) Effects of ethanol and other alkanols on the glucose transport system of Saccharomyces cerevisiae. Biotechnol. Bioeng. 24: 2601-2604.Google Scholar
  14. Mauricio JC, Salmon JM (1992) Apparent loss of sugar transport activity in Saccharomyces cerevisiae. Biotechnol. Lett. 14: 577-582.Google Scholar
  15. Monteiro GGA, Sa-Correia I (1998) In vivo activation of yeast plasma membrane H+-ATPase by ethanol: effect on the kinetic parameters and involvement of the carboxyl-terminus regulatory domain. Biochim. Biophys. Acta 1370: 310-316.Google Scholar
  16. Mota, Strehaiano P, Goma G (1984) Studies on conjugate effects of substrate (glucose) and product (ethanol) on cell growth kinetics during fermentation of different yeast strains. J. Inst. Brew. 90: 359-362.Google Scholar
  17. Piper PW, Talreja K, Panaretou B, Moradas-Ferreira P, Byrne K, Praekelt UM, Meacock P, Récnacq M, Boucherie H (1994) Induction of major heat-shock proteins of Saccharomyces cerevisiae, including plasma membrane Hsp30, by ethanol levels above a critical threshold. Microbiology 140: 3031-3038.Google Scholar
  18. Sablayrolles JM, Barre P, Grenier P (1987) Design of laboratory automatic system for studying alcoholic fermentations in anisothermal enological conditions. Biotechnol. Tech. 1: 181-184.Google Scholar
  19. Salmon JM (1989) Effect of sugar transport inactivation in Saccharomyces cerevisiae on sluggish and stuck enological fermentations. Appl. Environ. Microbiol. 55: 953-958.Google Scholar
  20. Salmon JM, Vincent O, Mauricio JC, Bely M, Barre P (1993) Sugar transport inhibition and apparent loss of activity in Saccharomyces cerevisiae as a major limiting factor of enological fermentations. Am. J. Enol. Vitic 44: 56-64.Google Scholar
  21. Thomas DS, Hossack JA, Rose AH (1978) Plasma-membrane lipid composition and ethanol tolerance in Saccharomyces cerevisiae. Arch. Microbiol. 117: 239-245.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Virginie Ansanay-Galeote
    • 1
    Email author
  • Bruno Blondin
    • 1
  • Sylvie Dequin
    • 1
  • Jean-Marie Sablayrolles
    • 1
  1. 1.INRA, Institut des produits de la vigne, Laboratoire de Microbiologie et Technologie des FermentationsMontpellierFrance

Personalised recommendations