Advertisement

Oxidation of Metals

, Volume 56, Issue 3–4, pp 313–346 | Cite as

Self-Repairing Metal Oxides

  • G. Hultquist
  • B. Tveten
  • E. Hörnlund
  • M. Limbäck;
  • R. Haugsrud
Article

Abstract

The oxidation of Cu, Zr, and alloys forming chromia, alumina, and zirconia was studied in a closed reaction chamber in O2 gas near 20 mbar. Information on the position of oxide growth has been gained from the 18O/SIMS technique. Rates of O2 dissociation on metal oxides, Au, and Pt have been evaluated from measurements in labeled O2. The experimental results indicate that hydrogen in the metal substrates induces increased metal-ion transport in internal oxide surfaces during oxidation, which leads to increased oxide growth at the oxide–gas interface. Experiments also show that oxides of rare-earth metals (REM) and Pt catalyze the dissociation of O2. An increased rate of O2 dissociation can lead to increased transport of oxygen ions in the oxides and increased oxide growth at the substrate–oxide interface. A balanced transport of metal and oxygen ions in metal oxides that leads to oxide growth at both the metal–oxide and at the oxide–gas interface is found to be favorable for the formation of protective oxides with good adherence to the metal substrate. Depending on the original proporation of metal–to–oxygen ion transport in the oxide, an addition of hydrogen will increase or decrease the oxidation kinetics. In analogy, an addition of REM will increase or decrease the oxidation kinetics, depending on the original proportion of metal-to-oxygen ion transport.

High-temperature corrosion oxide growth hydrogen REM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Tveten, G. Hultquist, and T. Norby, Oxid. Met. 51, 221 (1999).Google Scholar
  2. 2.
    F. H. Stott, G. C. Wood, and J. Stringer, Oxid. Met. 44, 113 (1995).Google Scholar
  3. 3.
    G. Hultquist, B. Tveten, and E. Hörnlund, Oxid. Met. 54, 1 (2000).Google Scholar
  4. 4.
    B. Tveten, G. Hultquist, and D. Wallinder, Oxid. Met., 55, 279 (2001).Google Scholar
  5. 5.
    F. A. Golightly, F. H. Stott, and G. C. Wood, Oxid. Met. 10, 163 (1976).Google Scholar
  6. 6.
    D. P. Whittle and J. Stringer, Phil. Trans. R. Soc. London A295, 309 (1980).Google Scholar
  7. 7.
    J. Stringer, Mater. Sci. Eng. A120, 129 (1989).Google Scholar
  8. 8.
    P. Hou, V. Chia, and I. Brown, Surf. Coatings Technol. 51, 73 (1992).Google Scholar
  9. 9.
    R. J. Hussey and M. J. Graham, Oxid. Met. 45, 349 (1996).Google Scholar
  10. 10.
    F. H. Stott, G. C. Wood, and F. A. Golightly, Corros. Sci. 19, 869 (1979).Google Scholar
  11. 11.
    J. R. Nicholls and P. Hanock, Role of Active Elements in the Oxidation Behavior of High-Temperature Metals and Alloys (1989), p. 195, E. Lang ed. Elsevier, London.Google Scholar
  12. 12.
    C. M. Cotell, G. J. Yurek, R. J. Hussey, D. F. Mitchell, and M. J. Graham, Oxid. Met. 34, 173 (1990).Google Scholar
  13. 13.
    A. Strawbridge and R. A. Rapp, J. Electrochem. Soc. 144, 1905 (1994).Google Scholar
  14. 14.
    B. A. Pint, Oxid. Met. 45, 1 (1996).Google Scholar
  15. 15.
    H. Liu, M. M. Stack, and S. B. Lyon, Solid State Ionics 109, 247 (1998).Google Scholar
  16. 16.
    T. Åkermark, G. Hultquist, and L. Gråsjö, J. Trace Microprobe Technol. 14, 377 (1996).Google Scholar
  17. 17.
    T. Åkermark and G. Hultquist, J. Electrochem. Soc. 144, 1456 (1997).Google Scholar
  18. 18.
    T. Åkermark and G. Hultquist, Oxid. Met. 47, 117 (1997).Google Scholar
  19. 19.
    T. Åkermark, G. Hultquist, and Q. Lu, J. Mater. Eng. Perform. 5, 516, (1996).Google Scholar
  20. 20.
    G. Hultquist, L. Gråsjö, Q. Lu, and T. Åkermark, Corros. Sci. 35, 1459 (1994.Google Scholar
  21. 21.
    D. Wallinder, G. Hultquist, B. Tveten, and E. Hörnlund, Corros. Sci, submitted.Google Scholar
  22. 22.
    E. Hörnlund, Diploma work, Royal Institute of Technology, Stockholm (1998).Google Scholar
  23. 23.
    C. Leygraf and G. Hultquist, Surf. Sci. 61, 60 (1976).Google Scholar
  24. 24.
    M. Z. Yang, J. L. Luo, Q. Yang, Z. Q. Quin, and P. R. Norton, J. Electrochem. Soc. 146, 2107 (1999).Google Scholar
  25. 25.
    H. Yashiro, B. Pound, N. Kumagi, and K. Tanno, Corros. Sci., 40, 781 (1998).Google Scholar
  26. 26.
    M. Z. Yang, Q. Yang, and J. L. Luo, Corros. Sci. 41, 741 (1999).Google Scholar
  27. 27.
    L. J. Qiao and J. L. Luo, Corros. Sci. 54, 281 (1998).Google Scholar
  28. 28.
    E. J. Felten, Oxid. Met. 10, 23 (1976).Google Scholar
  29. 29.
    B. A. Pint, J. R. Martin, and L. W. Hobbs, Solid State Ionics 78, 99 (1995).Google Scholar
  30. 30.
    P. Hou, V. Chia and I. Brown, Surf. Coatings Technol. 51, 73 (1992).Google Scholar
  31. 31.
    J. C. Pivin, D. Delaunay, C. Roques-Carmes, A. M. Huntz, and P. Lacombe, Corros. Sci. 20, 351 (1980).Google Scholar
  32. 32.
    P. Kofstad, High Temperature Corrosion (Elsevier, New York, 1988).Google Scholar
  33. 33.
    G. Hultquist, M. Limbäck, P. Tägtström, and E. Hörnlund, Presented at the 13th Intern. Symp. Zirconium in Nuclear Industry Industry, Annecy, France, June, 2001.Google Scholar
  34. 34.
    D. L. Douglass, P. Kofstad, A. Rahmel, and G. C. Wood, Oxid. Met. 45, 529 (1996).Google Scholar
  35. 35.
    Patent applications 9904428–1 and SE 51338.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • G. Hultquist
    • 1
  • B. Tveten
    • 1
  • E. Hörnlund
    • 1
  • M. Limbäck;
    • 2
  • R. Haugsrud
    • 3
  1. 1.Department of Materials Science and Engineering, Division of Corrosion ScienceRoyal Institute of TechnologyStockholmSweden
  2. 2.Westinghouse AtomVästeråsSweden
  3. 3.Centre for Materials ScienceUniversity of OsloOsloNorway

Personalised recommendations