, Volume 35, Issue 5, pp 393–398

On The Maximum Friction Law for Rigid/Plastic, Hardening Materials

  • S. Alexandrov
  • N. Alexandrova


For a rigid/plastic, hardening material model, it is shown that the velocity fields adjacent to surfaces of maximum friction must satisfy the sticking condition. This means that the stress boundary condition, the maximum friction law, may be replaced by the velocity boundary condition. Axisymmetric flows without rotation and planar flows are considered.

Friction Materials processing Plasticity Mechanics of Solids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Drucker, D.C., ‘Coulomb friction, plasticity, and limit loads’, ASME J. Appl. Mech. 21 (1954) 71–74.Google Scholar
  2. 2.
    Hill, R., ‘A general method of analysis for metal-forming processes’, J. Mech. Phys. Solids 11 (1963) 305–326.Google Scholar
  3. 3.
    Prandtl, L., ‘Practical application of the Henky equation to plastic equilibrium’, ZAMM 3 (1923) 401–406.Google Scholar
  4. 4.
    Hill, R., The Mathematical Theory of Plasticity, Clarendon Press, Oxford, 1983.Google Scholar
  5. 5.
    Collins, I.F. and Meguid, S.A., ‘On the influence of hardening and anisotropy on the plane-strain compression of thin metal strip’, ASME J. Appl. Mech. 44 (1977) 271–278.Google Scholar
  6. 6.
    Adams, M.J., Briscoe, B.J., Corfield, G.M., Lawrence, C.J. and Papathanasiou, T.D., ‘An analysis of the plane-strain compression of viscoplastic materials’, ASME J. Appl. Mech. 64 (1997) 420–424.Google Scholar
  7. 7.
    Shield, R.T., ‘Plastic flow in a converging conical channel’, J. Mech. Phys. Solids 3 (1955) 246–258.Google Scholar
  8. 8.
    Durban, D. and Budiansky, B., ‘Plane-strain radial flow of plastic materials’, J. Mech. Phys. Solids 26 (1979) 303–324.Google Scholar
  9. 9.
    Durban, D., ‘Axially symmetric radial flow of rigid linear-hardening materials’, Trans. ASME J. Appl. Mech. 46 (1979) 322–328.Google Scholar
  10. 10.
    Alexandrov, S.E. and Barlat, F., ‘Axisymmetric plastic flow of an F.C.C. latticemetal in an infinite converging channel’, Izv. RAN MTT (Mechanics of Solids) 32(5) (1997) 125-131 (Trans. from Russian).Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • S. Alexandrov
    • 1
  • N. Alexandrova
    • 2
  1. 1.Institute for Problems in MechanicsRussian Academy of SciencesMoscowRussia
  2. 2.Department of Applied MechanicsBauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations