Journal of Statistical Physics

, Volume 104, Issue 1–2, pp 221–253 | Cite as

Continuum Theory of Epitaxial Crystal Growth. I

  • E Weinan
  • Nung Kwan Yip


We present various continuum limits to describe epitaxial thin film growth. We consider a hierarchy of models which can take into account the diffusion of terrace adatoms, attachment and detachment of edge adatoms, vapor phase diffusion and the effect of multiple species. The starting point is the Burton–Cabrera–Frank type step flow model. We have obtained partial differential equations in the form of a coupled system of diffusion equation for the adatom density and a Hamilton–Jacobi equation for the film height function. This is supplemented with appropriate boundary conditions at the continuum level to describe the growth at the peaks and valleys on the film. The results here can be used in a macroscopic description of thin film growth.

epitaxial growth Burton–Cabrera–Frank (BCF) step flow model continuum limit 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Bena, C. Misbah, and A. Valance, Nonlinear evolution of a terrace edge during stepflow growth, Phys. Rev. B 47:7408 (1993).Google Scholar
  2. 2.
    W. K. Burton, N. Cabrera, and F.C. Frank, The growth of crystals and the equilibrium structure of their surfaces, Phil. Trans. Roy. Soc. London Ser. A 243:299 (1951).Google Scholar
  3. 3.
    G. Chechkin, A. Friedman, and A. Piatnitski, The boundary-value problem in domains with very rapidly oscillating boundary, J. Math. Anal. Appl. 231:213–234 (1999).Google Scholar
  4. 4.
    R. E. W. Caflisch, M. F. Gyure, B. Merriman, and C. Ratsch, Kinetic model for a step edge in epitaxial growth, Phys. Rev. E 59:6879–6887 (1999).Google Scholar
  5. 5.
    S. A. Chalmers, J. Y. Tsao, and A. C. Gossard, Lateral motion of terrace width distributions during step-flow growth, Appl. Phys. Lett. 61:645–647 (1992).Google Scholar
  6. 6.
    A. A. Chernov, Modern Crystallography III—Crystal Growth (Springer-Verlag, 1984).Google Scholar
  7. 7.
    S. F. Edwards and D. R. Wilkinson, The surface statistics of a granular aggregate, Proc. Roy. Soc. London A 381:17–31 (1982).Google Scholar
  8. 8.
    A. Friedman, B. Hu, and Y. Liu, A boundary value problem for the Poisson equation with multi-scale oscillating boundary, J. Diff. Eqn. 137:54–93 (1997).Google Scholar
  9. 9.
    N. Israeli and D. Kandel, Profile scaling in decay of nanostructures, Phys. Rev. Lett. 80:3300–3303 (1998).Google Scholar
  10. 10.
    M. Kardar, G. Parisi, and Y. C. Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett. 56:889–892 (1986).Google Scholar
  11. 11.
    J. Krug, On the shape of wedding cakes, J. Stat. Phys. 87:505–518 (1997).Google Scholar
  12. 12.
    J. S. Langer, Instabilities and pattern formation in crystal growth, Rev. Modern Phys. 52(1):1–28 (1980).Google Scholar
  13. 13.
    W. W. Mullins, Theory of thermal grooving, J. Appl. Phys. 28:333–339 (1957).Google Scholar
  14. 14.
    W. W. Mullins and R. F. Sekerka, Morphological stability of a particle growing by diffusion or heat flow, J. Appl. Phys. 34(2):323–329 (1963).Google Scholar
  15. 15.
    W. W. Mullins and R. F. Sekerka, Stability of a planar interface during solidification of a dilute binary alloy, J. Appl. Phys. 35:444–451 (1964).Google Scholar
  16. 16.
    M. Ozdemir and A. Zangwill, Morphological equilibration of a corrugated crystalline surface, Phys. Rev. B 42:5013–5024 (1990).Google Scholar
  17. 17.
    P. Pelcé, ed., Dynamics of Curved Fronts (Academic Press, Boston, 1988).Google Scholar
  18. 18.
    A. Pimpinelli and J. Villain, Physics of Crystal Growth (Cambridge University Press, 1998).Google Scholar
  19. 19.
    P. Politi and J. Villain, Ehrlich–Schwoebel instability in molecular-beam epitaxy: A minimal model, Phys. Rev. B 54:5114–5129 (1996).Google Scholar
  20. 20.
    O. Pierre-Louis, C. Misbah, Y. Saito, J. Krug, and P. Politi, New nonlinear evolution equation for steps during molecular beam epitaxy on vicinal surfaces, Phys. Rev. Lett. 80:4221 (1998).Google Scholar
  21. 21.
    T. Schulze and W. E, A continuum model for the growth of epitaxial films, J. Crystal Growth, to appear.Google Scholar
  22. 22.
    P. Šmilauer and D. D. Vvedensky, Coarsening and slope evolution during unstable epitaxial growth, Phys. Rev. B 52:14263–14272 (1995).Google Scholar
  23. 23.
    H. Spohn, Surface dynamics below the roughening transition, J. de Physique 3:69 (1996).Google Scholar
  24. 24.
    S. Tanaka, N. C. Bartelt, C. C. Umbach, R. M. Tromp, and J. M. Blakely, Step permeability and the relaxation of biperiodic gratings in Si(001), Phys. Rev. Lett. 78:3342–3345 (1997).Google Scholar
  25. 25.
    J. Y. Tsao, Fundamentals of Molecular Beam Epitaxy (Boston, Academic Press, 1988).Google Scholar
  26. 26.
    J. Villain, Continuum models of crystal growth from atomic beams with and without desorption, J. Phys. I 1:19–42 (1991).Google Scholar
  27. 27.
    D. D. Vvedensky, A. Zangwill, C. N. Luse, and M. R. Wilby, Stochastic equations of motions for epitaxial growth, Phys. Rev. E 48:852–862 (1993).Google Scholar
  28. 28.
    Y. Xiang, Ph.D. thesis, New York University, in preparation.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • E Weinan
    • 1
    • 2
  • Nung Kwan Yip
    • 3
  1. 1.Department of Mathematics and Program in Applied and Computational MathematicsPrinceton UniversityUSA
  2. 2.Courant InstituteNew York UniversityUSA
  3. 3.Department of MathematicsPurdue UniversityUSA

Personalised recommendations