Oxidation of Metals

, Volume 55, Issue 3–4, pp 243–260

High-Temperature Corrosion of Iron at 900°C in Atmospheres Containing HCl and H2O

  • Yoshiyuki Sato
  • Davoid J. Young
Article

Abstract

The corrosion behavior of iron at 900°C in gas mixtures of O2/N2, H2O/O2/N2, HCl/H2O/O2/N2, H2O/N2, and HCl/H2O/N2 was observed. Parabolic oxide-scaling kinetics were observed in all cases, except HCl/H2O/N2 containing 2.5% HCl. This gas produced linear weight-loss kinetics caused by FeCl2 vaporization. Lower HCl concentrations in H2O/N2 led to no chloride formation. In all cases, the reaction products reflected a close approach to local equilibrium between scale and gas. The presence of H2O led to oxide-scale-surface faceting, and in the presence of free oxygen, to acceleration of the sublayer growth of FeO.

High-temperature oxidation chlorination iron hydrogen chloride moisture chlorine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.-H. Reichel and U. Schirmer, Werkst. Korros. 40, 135 (1989).Google Scholar
  2. 2.
    N. Bolt, A. S. De Clercq, and E. J. A. Vogelaar, Werkst. Korros. 40, 142 (1989).Google Scholar
  3. 3.
    O. Forsén and S. Yläsaari, Werkst. Korros. 40, 147 (1989).Google Scholar
  4. 4.
    Y. Ihara, H. Ohgame, K. Sakiyama, and K. Hashimoto, Corros. Sci. 21, 805 (1981).Google Scholar
  5. 5.
    Y. Ihara, H. Ohgame, K. Sakiyama, and K. Hashimoto, Corros. Sci. 23, 167 (1983).Google Scholar
  6. 6.
    Y. Ihara, H. Ohgame, K. Sakiyama, and K. Hashimoto, Corros. Sci. 22, 901 (1982).Google Scholar
  7. 7.
    Y. Y. Lee and M. J. McNallan, Metall. Trans. A 18A, 1099 (1987).Google Scholar
  8. 8.
    D. Bramhoff, H. J. Grabke, and H. P. Schmidt, Werkst. Korros. 40, 642 (1989).Google Scholar
  9. 9.
    Y. Sato, M. Hara, and Y. Shinata, J. Jpn. Inst. Met. 58, 654 (1994) (in Japanese).Google Scholar
  10. 10.
    F. C. Zeisburg, in International Critical Tables of Numerical Data, E. W. Washburn, ed., (McGraw-Hill, New York, 1926), pp. 301–302.Google Scholar
  11. 11.
    G. M. Tranell, Ph.D. Thesis, The University of New South Wales (1999), p. 73.Google Scholar
  12. 12.
    C. Wagner, Z. Phys. Chem. B 21, 25 (1979).Google Scholar
  13. 13.
    R. K. Singh Raman, B. Gleeson, and D. J. Young, Mater. Sci. Technol. 14, 373 (1998).Google Scholar
  14. 14.
    O. Kubaschewski and C. B. Alcock, Metallurgical Thermochemistry, 5th edn. (Pergamon Press, Oxford, 1979).Google Scholar
  15. 15.
    B. Sundman, B. Jansson, and J.-O. Andersson, CALPHAD 9, 153 (1985).Google Scholar
  16. 16.
    H. Deacon, Chem. News 22, 157 (1970).Google Scholar
  17. 17.
    T. Norby, Selected Topics in High Temperature Chemistry, Defect Chemistry of Solid, O. Johannessen and A. G. Andersen, eds. (Elsevier, Amsterdam, 1989), p. 101.Google Scholar
  18. 18.
    C. W. Tuck, M. Odgers, and K. Sachs, Corros. Sci. 9, 271 (1969).Google Scholar
  19. 19.
    P. Elliott, A. A. Ansari, and R. Nabovi, High Temp. Corros. Energy Syst. p. 437 (1985).Google Scholar
  20. 20.
    Y. Shinata, M. Hara, Y. Sato, and T. Nakagawa, Trans. Mat. Res. Soc. Jpn. 14A, 157 (1994).Google Scholar
  21. 21.
    H. J. V. Lee, B. Gleeson, and D. J. Young, Proc. 13th Intern. Corros. Conf., Vol. 3 (ACA Inc., Melbourne, 1996), paper 284.Google Scholar
  22. 22.
    H. J. V. Lee, D. J. Young, and B. Gleeson, Corrosion 99 (NACE, Houston, Texas 1999), paper 66.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Yoshiyuki Sato
    • 1
  • Davoid J. Young
    • 1
  1. 1.School of Materials Science and EngineeringThe University of New South WalesSydneyAustralia

Personalised recommendations