Journal of Chemical Ecology

, Volume 27, Issue 6, pp 1091–1104 | Cite as

Behavioral and Electrophysiological Responses of Arhopalus tristis to Burnt Pine and Other Stimuli

  • D. M. Suckling
  • A. R. Gibb
  • J. M. Daly
  • X. Chen
  • E. G. Brockerhoff
Article

Abstract

The exotic longhorn beetle Arhopalus tristisis a pest of pines, particularly those damaged by fire, and a major export quarantine issue in New Zealand. Actinograph recordings of caged individuals showed that males and females were most active from dusk to midnight. Olfactometer experiments indicated that females moved upwind toward odors from burnt pine (80%, N= 75), compared to unburnt pine (20%). Oviposition choice tests showed that eggs were predominantly laid on burnt logs (79%, N= 20), compared to unburnt logs. Beetles were trapped by funnel traps baited with burnt (mean catch per trap 7.8) and unburnt (mean catch 4.1 per trap) pine bark from inside a screen cage (4 × 3 m), while unbaited traps had a mean catch 0.1 beetles (N= 8 replicates). The treatment of burnt pine bark with a 1:1:2 mixture of green leaf volatiles (E)-2-hexen-1-ol and (E)-2-hexenal) in mineral oil as a repellent reduced trap catch by fivefold in a similar experiment (mean catches of 1.2 beetles per trap to burnt pine bark plus repellent treatment and 6.2 beetles per trap to burnt pine bark alone). The treatment of burnt pine bark with this solution also reduced oviposition by 98.5% (mean eggs per log of 11.1 on burnt pine and 0.3 on burnt pine plus repellent), indicating that oviposition cues have the potential to be significantly disrupted. The electrophysiological responses of adult beetles were recorded to a range of odorants. Normalized responses to monoterpenes known to occur in Pinus radiataranged from about 20 to about 150, with α-terpineol giving the greatest responses in both sexes. Green leaf volatiles also gave high responses. The potential exists to improve the management of this insect using chemical cues in various ways.

Attractant Pinus radiata Arhopalus tristis fire smoke trap Cerambycidae oviposition bark repellent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. BORDEN, J. H. 1995. Development and use of semiochemicals against bark and timber beetles, pp. 431-449, inJ. A. Armstrong and W. G. H. Ives (eds.). Forest Insect Pests in Canada. Natural Resources Canada, Canadian Forest Service, Ottawa, Canada.Google Scholar
  2. BRADBURY, P. M. 1998. The effects of the burnt pine longhorn beetle and wood-staining fungi on fire damaged Pinus radiatain Canterbury. N.Z. For. 43:28-31.Google Scholar
  3. BROCKERHOFF, E. G., and GRANT, G. G. 1999. Correction for differences in volatility among olfactory stimuli and effect on EAG responses of Dioryctria abietivorella(Lepidoptera: Pyralidae) to plant volatiles. J. Chem. Ecol. 26:1353-1368.Google Scholar
  4. BROCKERHOFF, E. G., and HOSKING, G. P. 2001. Arhopalus tristis(F.) [D Arhopalus ferus(Mulsant)] (Coleoptera: Cerambycidae), Burnt pine longhorn. Forest and Timber Insects in New Zealand No. 27. Forest Research, Rotorua, New Zealand. (in press).Google Scholar
  5. BURDON, R. D., ZABKIEWICZ, J. A., and ANDREW, I. A. 1992. Genetic survey of Pinus radiata. 8: Population differences in monoterpene composition of cortical oleoresin. N.Z. J. For. Sci. 22:257-273.Google Scholar
  6. CROSS, D. J. 1991. Penetration of methyl bromide into Pinus radiatawood and its significance for export quarantine. N.Z. J. For. Sci. 21:235-245.Google Scholar
  7. DICKENS, J. C., BILLINGS, R. F., and PAYNE, T. L. 1992. Green leaf volatiles interrupt aggregation pheromone response in bark beetles infesting southern pines. Experientia48:523-524.Google Scholar
  8. EATON, C. B. 1959. Observations on the survival of Arhopalus productus(LeConte) larvae in Douglas-fir lumber. Pan-Pac. Entomol.35:114-116.Google Scholar
  9. EHNSTRöM, B., LÅNGSTRöM, B., and HELLQVIST, C. 1995. Insects in burnt forests-forest protection and faunal conservation (preliminary results). Entomol. Fenn. 6:109-117.Google Scholar
  10. EVANS, W. G. 1972. The attraction of insects to forest fires, pp. 110-127, inProceedings Annual Tall Timbers Fire Ecology Conference 10, Tall Timbers Research Station, Tallahassee, Florida.Google Scholar
  11. EVANS, W. G. 1973. Fire beetles and forest fires. Insect World Dig. 1:14-18.Google Scholar
  12. FATZINGER, C. W., SIEGFRIED, B. D., WILKINSON, R. C., and NATION, J. L. 1987. Trans-verbenol, turpentine, and ethanol as trap baits for the black turpentine beetle, Dendroctonus terebrans, and other forest Coleoptera in north Florida. J. Entomol. Sci. 22:201-209.Google Scholar
  13. FREUDE, H., HARDE, K. W., and LOHSE, G. A. 1966. Die Käfer Mitteleuropas. Vol. 9, Cerambycidae. Goecke and Evers, Krefeld, Germany.Google Scholar
  14. GARDINER, K.M. 1957. Deterioration of fire-killed pine in Ontario and the causal wood-boring beetles. Calif. Entomol. 89:241-263.Google Scholar
  15. HOSKING, G. P. 1982. Arhopalus ferusantennal structure examination using the SEM. Unpublished project record. Forest Research Institute, Rotorua, New Zealand.Google Scholar
  16. HOSKING, G. P., and BAIN, J. 1977. Arhopalus ferus(Coleoptera: Cerambycidae); its biology in New Zealand. N.Z. J. For. Sci. 7:3-15.Google Scholar
  17. JONES, O. T. 1998. Practical applications of pheromones and other semiochemicals, pp. 263-355, inP. E. Howse, I. D. R. Stevens, and O. T. Jones (eds.). Insect Pheromones and Their Use in Pest Management. Chapman and Hall, London.Google Scholar
  18. LOMAX, T. D., FRANICH, R. A., and KROESE, H. W. 1991. Pyrolysis products of Pinus radiatabark. N.Z. J. For. Sci. 21:111-115.Google Scholar
  19. MCCULLOUGH, D., WERNER, R. A., and NEUMANN, D. 1998. Fire and insects in northern and boreal forest ecosystems of North America. Annu. Rev. Entomol. 43:107-127.Google Scholar
  20. PARMELEE, F. T. 1941. Longhorned and flatheaded borers attacking fire-killed coniferous timber in Michigan. J. Econ. Entomol. 105:795-806.Google Scholar
  21. ROSS, D. A. 1960. Damage by long-horned wood borers in fire-killed white spruce, central British Columbia. For. Chron. 36:355-361.Google Scholar
  22. SCHüTZ, S., WEISSBECKER, B., HUMMEL, H. E., APEL, K. H., SCHMITZ, H., and BLECKMANN, H. 1999. Insect antenna as a smoke detector. Nature398:298-299.Google Scholar
  23. SUCKLING, D. M., and KARG, G. 2000. Pheromones and semiochemicals, pp. 63-99, inJ. Rechcigl and N. Rechcigl (eds.). Biological and Biotechnical Control of Insect Pests. CRC Press, Boca Raton, Florida.Google Scholar
  24. SUCKLING, D. M., GIBB, A. R., KAY, S., PARRY, F., and ROHITHA, H. 1999. Are insects vectors of sapstain fungi in New Zealand? pp. 117-121, inB. Kreber (ed.). Proceedings, 2nd New Zealand Sapstain Symposium, Rotorua. Forest Research Bulletin 215.Google Scholar
  25. VILLIERS, A. 1978. Faune des Coléoptères de France. I. Cerambycidae. Edition Lechevalier S. A. R. L., Paris, pp. 231-232.Google Scholar
  26. WICKMAN, B. E. 1964. Freshly scorched pines attract large numbers of Arhopalus asperatusadults. Pan-Pac. Entomol. 40:59-60.Google Scholar
  27. WILSON, I. M., BORDEN, J. H., GRIES, R., and GRIES, G. 1996. Green leaf volatiles as antiaggregants for the mountain pine beetle, Dendroctonus ponderosaeHopkins (Coleoptera: Scolytidae). J. Chem. Ecol. 22:1861-1875.Google Scholar
  28. ZABKIEWICZ, J. A., and ALLAN, P. A. 1975. Monoterpenes of young cortical tissues of Pinus radiata. Phytochemistry14:211-212.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • D. M. Suckling
    • 1
  • A. R. Gibb
    • 1
  • J. M. Daly
    • 1
  • X. Chen
    • 1
  • E. G. Brockerhoff
    • 2
  1. 1.HortResearchLincolnNew Zealand
  2. 2.Forest ResearchChristchurchNew Zealand

Personalised recommendations