Geometriae Dedicata

, Volume 84, Issue 1–3, pp 253–260 | Cite as

A Stereological Version of the Gauss–Bonnet Formula

  • X. Gual-Arnau
  • J. J. Nuño-Ballesteros


We give a stereological version of the Gauss–Bonnet formula in order to compute the Euler characteristic of a domain with boundary in a smooth orientable surface in ℝ3, by looking at contacts with a 'sweeping' plane.

Euler–Poincare characteristic contact with planes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bruce, J. W. and Giblin, P. J.: Curves and Singularities, Cambridge Univ. Press, 1984.Google Scholar
  2. 2.
    Gundersen, H. J. G., Boyce, R. W., Nyengaard, J. R. and Odgaard, A.: The conneulor: unbiased estimation of connectivity using physical disectors under projection, Bone 14 (1993), 217-222.Google Scholar
  3. 3.
    Hadwiger, H.: Vorlesungen über Inhalt, Ober£aähe und Isoperimetrie, Springer-Verlag, Berlin, 1957.Google Scholar
  4. 4.
    Morse, M.: Singular points of vector ¢elds under general boundary conditions, Amer. J. Math. 51 (1929), 165-178.Google Scholar
  5. 5.
    Santalö, L. A.:Integral Geometry and Geometric Probability, Addison-Wesley, London, 1976.Google Scholar
  6. 6.
    Teufel, E.: Differential Topology and the Computation of Total Absolute Curvature, Math. Ann 258 (1982), 471-480.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • X. Gual-Arnau
    • 1
  • J. J. Nuño-Ballesteros
    • 2
  1. 1.Department de Matemàtiques, Campus Riu SecUniversitat Jaume ICastellóSpain
  2. 2.Departament de Geometria i TopologiaUniversitat de ValènciaBurjassotSpain

Personalised recommendations