Advertisement

Water, Air, and Soil Pollution

, Volume 128, Issue 3–4, pp 339–353 | Cite as

Availability of Heavy Metals for Brassica Chinensis Grown in an Acidic Loamy Soil Amended with a Domestic and an Industrial Sewage Sludge

  • J. W. C. Wong
  • K. M. Lai
  • D. S. Su
  • M. Fang
Article

Abstract

The use of sewage sludge on agriculture provides an alternativefor sewage sludge disposal. Therefore, it was the aim of thepresent study to evaluate the feasibility of using a domestic(Tai Po sludge) and an industrial (Yuen Long sludge) sewagesludge produced in Hong Kong for the growth of vegetable crops.The acidic loamy soil with or without lime treatment was amendedseparately with each sludge at application rates of 0, 5, 10, 25and 50% (v/v) for the growth of a common local vegetable crop,Brassica chinensis. The plant available metal contents, asindicated by the DTPA extraction, increased with an increase insludge amendment, but decreased with lime amendment at eachsludge application rate due to the reduced metal availabilityat a higher pH. Sludge amendment enhanced the dry weight yieldof B. chinensis and the increase was more obvious for thesoil with lime treatment. The industrial sludge caused a loweryield than that of the domestic sludge amendment and asignificant reduction in yield at high application rates of YuenLong sludge was also noted. Tissue heavy metal contents, exceptfor Fe, increased as the sludge amendment rate increased whileplant grown in Yuen Long sludge amended soil contained higher Crand Zn contents at each sludge application rate. Liming the soilreduced the heavy metal contents in the plant tissues, exceptfor Fe, which were all below the allowable levels for vegetablecrops. The present experiment demonstrates that liming wasimportant in facilitating the growth of B. chinensis in sludge amended soil. The optimal sludge amendment rate for thesoil with lime amendment was 25% Tai Po sludge and 10% YuenLong sludge, while for the soil without lime amendment was 10% and5%, respectively.

acidic loamy soil Brassica heavy metals lime sewage sludge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alloway, B. J.: 1995, Heavy Metals in Soils, Blackie Academic & Professional.Google Scholar
  2. Anderson, A. A. and Neilsson, K. O.: 1974, Ambio 3, 198.Google Scholar
  3. Charman, P. E. V. and Murphy, B. W.: 1992, ‘A Soil Conservation Handbook for New South Wales’, in Soils Their Properties and Management, Sydney University Press.Google Scholar
  4. Epstein, E., Taylor, J. M. and Chaney, R. L.: 1976, J. Environ. Qual. 5, 422.Google Scholar
  5. Hong Kong Environmental Protection Department: 1989, Waste Disposal Plan for Hong Kong, Hong Kong Govt. Printer.Google Scholar
  6. Jones, G. E.: 1981, ‘Sludge Characteristics’, in J. A. Borchardt, W. J., Redeman, G. E. Jones and R. T. Sprague (eds.), Sludge and Its Ultimate Disposal, Ann Arbor Science, pp. 83.Google Scholar
  7. Kabata-Pendias, A. and Pendias, H.: 1986, Trace Elements in Soils and Plants, CRC Press Inc., Florida.Google Scholar
  8. Krebs, R., Gupta, S. K., Furrur, G. and Schulin, R.: 1998, J. Environ. Qual. 27, 18.Google Scholar
  9. Kuo, S., Jellum, E. J. and Baker, A. S.: 1985, Soil Sci. 139, 122.Google Scholar
  10. Lindsay, W. L. and Norwell, W. A.: 1978, Soil Sci. Soc. Am. J. 42, 421.Google Scholar
  11. Little, T. M. and Hill, J. J.: 1978, Agricultural Experimental Design and Analysis, John Wiley, Chichester.Google Scholar
  12. Logan, T. J. and Harrison, B. J.: 1995, J. Environ. Qual. 24, 153.Google Scholar
  13. Logan, T. J., Lindsay, B. J., Goins, L. E. and Ryan, J. A.: 1997,J. Environ. Qual. 26, 534.Google Scholar
  14. Lowther, J. R.: 1980, Comm. Soil Sci. Plant Annal. 11, 175.Google Scholar
  15. McConnell, D. B., Shiralipour, A. and Smith, W. H.: 1993, J. Environ. Qual. 2, 89.Google Scholar
  16. Page, A. L., Miller, R. H. and Keeney, D. R.: 1982, Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, 2nd ed., American Society of Agronomy Inc., U.S.A.Google Scholar
  17. Rappaport, B. D., Martens, D. C., Reneau Jr., R. B. and Simpson, T. W.: 1988, J. Environ. Qual. 17, 42.Google Scholar
  18. Richards, L. A.: 1960, Diagnosis and Improvement of Saline and Alkaline Soils, U.S. Salinity Laboratory, Agricultural Handbook No. 60.Google Scholar
  19. Sims, J. T. and Kline, J. S.: 1991, J. Environ. Qual. 20, 387.Google Scholar
  20. Smith, S. R.: 1993, Environ. Pollut. 85, 312.Google Scholar
  21. U.S. Environmental Protection Agency: 1994, A plain English guide to the EPA Part 503 Biosolid Rule. Washington, DC: EPA/832-R–93–003.Google Scholar
  22. Vaughan, D. and Ord, B. G.: 1985, ‘Soil Organic Matter–A Perspective on Its Nature, Extraction, Turnover and Role in Soil Fertility’, in D. Vaughan and R. E. Malcolm (eds.), Developments in Plant and Soil Sciences Soil Organic Matter and Biological Activity, Martinus Nijhoff/DR W. Junk Publishers.Google Scholar
  23. Webber, M. D., Kloke, A. and Tjell, J. C.: 1983, ‘A Review of Current Sludge Use Guidelines for the Control of Heavy Metal Contamination in Soil’, in P. L. Hermirte and H. Ott (eds.), Processing and Use of Sewage Sludge, Proceedings of the 3rd Intl. Symp., Brighton, U.K.Google Scholar
  24. Williams, D. E., Vlamis, J., Pukite, A. H. and Corey, J. E.: 1979, Soil Sci. 129, 119.Google Scholar
  25. Wong, J. W. C. and Lai, K. M.: 1996, Bio. Fertil. Soils 23, 420.Google Scholar
  26. Wong, J. W. C. and Su, D. C.: 1997, Biores. Technol. 59, 57.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • J. W. C. Wong
    • 1
  • K. M. Lai
    • 1
  • D. S. Su
    • 2
  • M. Fang
    • 1
  1. 1.Department of BiologyHong Kong Baptist UniversityKowloon TongHong Kong
  2. 2.College of Natural Resources and Environmental SciencesChina Agricultural UniversityBeijingP.R. China

Personalised recommendations