Skip to main content
Log in

Brain Serotonin Metabolism during Water Deprivation and Hydration in Rats

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

The effects of two-day water deprivation and hyperhydration (provision of 4% sucrose solution for 48 h) on levels of serotonin and its major metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the midbrain and hypothalamus were studied in Wistar rats. The rates of diuresis (0.05 ± 0.01 and 0.84 ± 0.12 ml/h/100 g in water deprivation and hyperhydration respectively) and urine osmolality (1896 ± 182 and 50 ± 13 mOsm/kg) reflected increases and decreases in blood vasopressin levels. Water deprivation was associated with a significant increase in 5-HIAA levels in the midbrain and hypothalamus, along with a decrease in serotonin levels and a three-fold increase in serotonin catabolism (the 5-HIAA:serotonin concentration ratio). Hyperhydration induced moderate increases in serotonin and 5-HIAA levels in the hypothalamus with no changes in the midbrain. The blood corticosterone level doubled in water deprivation and decreased in hyperhydration. It is suggested that activation of the serotoninergic system induces a complex adaptive reaction in water deprivation, including mechanisms specific for the regulation of water-electrolyte homeostasis and non-specific stress mechanisms (vasopressin and corticoliberin secretion).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. K. Velikanova, Osmoreceptors [in Russian], Nauka, Novosibirsk (1985).

    Google Scholar 

  2. A. G. Genetsinskii, Physiological Mechanisms of Water-Salt Equilibrium [in Russian], Academy of Sciences of the USSR Press, Moscow, Leningrad (1963).

    Google Scholar 

  3. L. N. Ivanova, “Regulation of water balance in the body,” in: The Physiology of Water-Salt Metabolism in the Kidney [in Russian], Nauka, St. Petersburg (1993), pp. 43–70.

    Google Scholar 

  4. L. N. Maslova, E. V. Chernigovskaya, M. A. Belen'kii, O. A. Danilova, E. V. Naumenko, and A. L. Polenov, “The effects of serotonin on hypothalamic structures involved in the regulation of the hypophyseal-adrenocortical system,” Fiziol. Zh. SSSR, 76, No. 3, 331–337 (1990).

    Google Scholar 

  5. Yu. V. Natochin, “The mechanism of osmotic dilution and concentration of urine,” in: The Physiology of Water-Salt Metabolism in the Kidney [in Russian], Nauka, St. Petersburg (1993), pp. 393–416.

    Google Scholar 

  6. E. V. Naumenko, “The effects of 5-hydroxytryptamine on the function of the hypophyseal-adrenal system,” Izv. Sib. Otd. Akad. Nauk. SSSR Ser. Biol., 12, No. 3, 143–144 (1965).

    Google Scholar 

  7. E. V. Naumenko, Central Regulation of the Hypophyseal-Adrenal Complex [in Russian], Nauka, Leningrad (1971).

    Google Scholar 

  8. E. V. Naumenko and N. K. Popova, Serotonin and Melatonin in the Regulation of the Endocrine System [in Russian], Nauka, Novosibirsk (1975).

    Google Scholar 

  9. A. A. Tikhonov and N. M. Bazhan, “Measurement of plasma and incubation fluid glucocorticoids by competitive protein binding without preliminary extraction,” Lab. Delo., 12, 709–713 (1984).

    Google Scholar 

  10. Ya. D. Finkinshtein, The Osmoregulatory System of Higher Animals[in Russian], Nauka, Novosibirsk (1983).

    Google Scholar 

  11. A. Adachi, A. Niijima, and H. L. Jacobs, “An hepatic osmoreceptor mechanism in the rat. Electrophysiological and behavioural studies,” Amer. J. Physiol., 231, 1043–1049 (1976).

    Google Scholar 

  12. P. Bie, “Osmoreceptors, vasopressin and control of renal water excretion,” Physiol. Rev., 60, 961–1048 (1980).

    Google Scholar 

  13. E. Bliss, J. Ailion, and J. Zwanziger, “Metabolism of norepinephrine, serotonin and dopamine in rat brain with stress,” J. Pharmacol. Exp. Ther., 164, 122–134 (1968).

    Google Scholar 

  14. S. J. Cooper and R. Ciccocioppo, “Effects of selective 5-HT1 receptor agonists in water-deprived rats on salt intake in two-choice tests,” Pharmacol. Biochem. Behav., 45, No. 3, 513–518 (1993).

    Google Scholar 

  15. G. Curzon and A. R. Green, “Rapid method for the determination of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in small regions of rat brain,” Brit. J. Pharmacol., 39, 653–655 (1970).

    Google Scholar 

  16. G. Curzon, L. Gibson, and A. O. Oluyomi, “Appetite suppression by commonly used drugs depends on 5-HT receptors but not on 5-HT availability,” TiPS, 18, 21–25 (1997).

    Google Scholar 

  17. J. Dohanics, G. E. Hoffman, and J. G. Verbalis, “Hyponatremia-induced inhibition of magnocellular neurons causes stressor-selective impairment of stimulated adrenocorticotropin secretion in rats,” Endocrinology, 128, 331–340 (1991).

    Google Scholar 

  18. D. M. Gibbs and W. Vale, “Effect of the serotonin reuptake inhibitor fluoxetine on corticotropin-releasing factor and vasopressin secretion into hypophyseal portal blood,” Brain Res., 280, 176–179 (1983).

    Google Scholar 

  19. S. L. Handley and J. W. McBlane, “The effect of water deprivation on brain 5-HT turnover, plasma corticosterone and elevated X-maze behavior,” in: Serotonin-1991, Birmingham University, Birmingham (1991).

    Google Scholar 

  20. K. Hashimoto, N. Ohno, K. Murakami, J. Kageyama, Y. Aoki, and J. Takahara, “The effect of serotonin agonist 1-(trifluoromethylphenyl)-piperazine on corticotropin releasing factor and arginine vasopressin in rat hypothalamus nuclei,” Endocrinol. Jpn., 29, 383–388 (1982).

    Google Scholar 

  21. J. P. Herman. MK-H. Schafer, S. J. Watson, and T. G. Sherman, “In situ hybridization analysis of arginine vasopressin gene transcription using intron-specific probes,” Mol. Endocrinol., 5, 1447–1456 (1991).

    Google Scholar 

  22. T. Kimura, L. Share, B. C. Wang, and J. T. Crofton, “The role of central adrenoceptors in the control of vasopressin release and blood pressure,” Endocrinology, 105, 1829–1836 (1981).

    Google Scholar 

  23. J. Z. Kiss, J. A. M. van Eckelen, J. M. H. M. Reul, H. M. Westphal, and E. R. de Kloet, “Glucocorticoid receptor in magnocellular neurosecretory cells,” Endocrinology, 122, 444–449 (1988).

    Google Scholar 

  24. L. T. Knapp, K. A. Berghorn, G. E. Hoffman, and T. G. Sharnan, “Osmolality-dependent steroid feedback regulation of vasopressin gene expression,” in: Neurohypophysis: Recent Progress of Vasopressin and Oxytocin Research, Elsevier Science B. V., Amsterdam (1995), pp. 131–141.

    Google Scholar 

  25. H. P. Krieger and D. T. Krieger, “Chemical stimulation of the brain: effect of adrenal corticoid release,” Amer. J. Physiol., 218, 1632–1641 (1970).

    Google Scholar 

  26. G. Leng, R. E. J. Dyball, and J. A. Russell, “Neurophysiology of body fluid homeostasis,” Comp. Biochem. Physiol., 90A, 781–788 (1988).

    Google Scholar 

  27. J. V. Menani and A. K. Johnson, “Lateral parabrachial serotonergic mechanisms: angiotensin-induced pressore and drinking responses,” Amer. J. Physiol., 269, R1044–R1051 (1995).

    Google Scholar 

  28. E. V. Naumenko, “Hypothalamic chemoreactive structures and the pituitary-adrenal function. Effect of local injection of norepinephrine, carbachol and serotonin into the brain of guinea pigs with intact brains and after mesencephalic transection,” Brain Res., 11, 1–10 (1968).

    Google Scholar 

  29. E. V. Naumenko, Central Regulation of the Pituitary-Adrenal Complex, Consultants Bureau, Plenum Publishing Corporation, New York (1973).

    Google Scholar 

  30. H. Raff, “Interactions between neurohypophyseal hormones and the ACTH-adrenocortical axis,” Ann. N. Y. Acad. Sci., 689, 411–425 (1993).

    Google Scholar 

  31. L. C. Reis, M. J. Ramalho, and J. Antunes-Rodrigues, “Central serotonergic modulation of drinking behavior induced by water deprivation: effect of serotonergic agonist (MK-212) administered intracerebroventricularly,” Braz. Med. Biol. Res., 23, 1335–1338 (1990).

    Google Scholar 

  32. G. L. Robertson, “The regulation of vasopressin function in health and disease,” Recent Progr. Horm. Res., 33, 333–385 (1977).

    Google Scholar 

  33. S. Scaccianoce, L. A. Muscolo, G. Cigliana, D. Navazra, R. Nicolai, and L. Andreucci, “Evidence for a specific role of vasopressin in sustaining pituitary-adrenocortical stress response in the rat,” Endocrinology, 1928, 3138–3143 (1991).

    Google Scholar 

  34. A. H. Sklar and R. W. Schrier, “Central nervous system mediators of vasopressin release,” Physiol. Rev., 63, 1243–1280 (1983).

    Google Scholar 

  35. J. G. Verbalis, “Osmotic inhibition of neurohypophyseal secretion,” Ann. N. Y. Acad. Sci., 689, 146–160 (1993).

    Google Scholar 

  36. E. B. Verney, “The antidiuretic hormone and factors which determine its release,” Proc. Roy. Soc. Ser. B. Biol. Sci., 135, 25–106 (1947).

    Google Scholar 

  37. T. Vokes and G. L. Robertson, “Physiology of secretion of vasopressin,” in: Frontiers of Hormone Research: Diabetes Insipidus in Man, Czernichow et al. (eds.), Basel (1985), Vol. 13, pp. 127–155.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popova, N.K., Ivanova, L.N., Amstislavskaya, T.G. et al. Brain Serotonin Metabolism during Water Deprivation and Hydration in Rats. Neurosci Behav Physiol 31, 327–332 (2001). https://doi.org/10.1023/A:1010346904526

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010346904526

Navigation