Theory and Decision

, Volume 50, Issue 3, pp 239–248 | Cite as

On S-Convexity and Risk Aversion

  • Michel Denuit
  • Claude Lefèvre
  • Marco Scarsini


The present note first discusses the concept of s-convex pain functions in decision theory. Then, the economic behavior of an agent with such a pain function is represented through the comparison of some recursive lotteries.

Expected utility theory Actuarial studies s-convex pain functions Stochastic s-convex orders Recursive lotteries 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Borch, K. (1974), The Mathematical Theory of Insurance. Lexington: D.C. Heath & Company.Google Scholar
  2. Bowers, N.L., Gerber, H.U., Hickman, J.C., Jones, O.A. and Nesbitt, C.J. (1996), Actuarial Mathematics. Itasca, IL: Society of Actuaries.Google Scholar
  3. Denuit, M., DeVylder, E. and Lefèvre, Cl. (1999), Extremal generators and extremal distributions for the continuous s-convex stochastic orderings, Insurance: Mathematics and Economics 24: 201-217.Google Scholar
  4. Denuit, M., Dhaene, J. and Van Wouwe, M. (1999), The economics of insurance: a review and some recent developments, Bulletin de l'Association Suisse des Actuaires 2: 137-175.Google Scholar
  5. Denuit, M., Lefèvre, Cl. and Shaked, M. (1998), The s-convex orders among real random variables, with applications, Mathematical Inequalities and Their Applications 1: 585-613.Google Scholar
  6. De Vylder, F.E. (1996), Advanced Risk Theory. A Self-Contained Introduction. Bruxelles: Editions de l'Université Libre de Bruxelles-Swiss Association of Actuaries.Google Scholar
  7. Fishburn, P.C. (1982a), The Foundations of Expected Utility. Dordrecht: Reidel Publishing Co.Google Scholar
  8. Fishburn, P.C. (1982b), Moment-preserving shifts and stochastic dominance, Mathematics of Operations Research 7: 629-634.Google Scholar
  9. Goovaerts, M.J., Kaas, R., Van Heerwaarden, A.E. and Bauwelinckx, T. (1990), Effective Actuarial Methods. Amsterdam: North-Holland.Google Scholar
  10. Hürlimann, W. (1998), Extremal Moment Methods and Stochastic Orders. Application in Actuarial Sciences. Monograph manuscript.Google Scholar
  11. Kaas, R. and Hesselager, O. (1995), Ordering claim size distributions and mixed Poisson probabilities, Insurance: Mathematics and Economics 17: 193-201.Google Scholar
  12. Kaas, R., Van Heerwaarden, A.E. and Goovaerts, M.J. (1994), Ordering of Actuarial Risks. Bruxelles: CAIRE Educations Series, vol. 1.Google Scholar
  13. Mosler, K. and Scarsini, M. (1991), Some theory of stochastic dominance. In: K. Mosler and M. Scarsini, eds, Stochastic Orders and Decision under Risk. IMS Lecture Notes 19: 261-284.Google Scholar
  14. Pečarić, J.E., Proschan, F. and Tong, Y.L. (1992), Convex Functions, Partial Orderings, and Statistical Applications. New York: Academic Press.Google Scholar
  15. Roberts, A.W. and Varberg, D.E. (1973), Convex Functions. New York: Academic Press.Google Scholar
  16. Scarsini, M. (1994), Comparing risk and risk aversion. In: M. Shaked and J.G. Shanthikumar, Stochastic Orders and their Applications, 351-378. New York: Academic Press.Google Scholar
  17. Schmidt, U. (1998), Axiomatic Utility Theory under Risk. Lecture Notes in Economics and Mathematical Systems 461. Berlin: Springer Verlag.Google Scholar
  18. Shaked, M. and Shanthikumar, J.G. (1994), Stochastic Orders and their Applications. New York: Academic Press.Google Scholar
  19. Trowbridge, C.L. (1989), Fundamental Concepts of Actuarial Sciences, Itasca, IL: Actuarial Education and Research Fund.Google Scholar
  20. Von Neumann, J. and Morgenstern, O. (1947), Theory of Games and Economic Behavior, second edn. Princeton: Princeton University Press.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Michel Denuit
    • 1
  • Claude Lefèvre
    • 1
  • Marco Scarsini
    • 1
  1. 1.Institut de Statistique Université Catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations