, Volume 70, Issue 2, pp 119–132 | Cite as

Analysis of Soil Bacterial Diversity: Methods, Potentiality, and Prospects

  • T. G. Dobrovol'skaya
  • L. V. Lysak
  • G. M. Zenova
  • D. G. Zvyagintsev


The paper presents a comparative description of the modern molecular genetic and routine culture techniques for assessing bacterial diversity in soils and gives analysis for the different results obtained by these two groups of methods. The necessity of the collaboration of soil scientists, microbiologists, and molecular biologists in integrating different research methods for a proper assessment of soil microbial diversity is discussed. The paramount importance of soil as the source and reserve of biodiversity on the Earth is emphasized.

bacterial diversity bacterial communities soil molecular genetic methods culture techniques 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zvyagintsev, D., Biodiversity of Microorganisms in Different Soil Types, Transaction 15th World Congress of Soil Science, Acapulco, 1994, vol. 4a, pp. 187–189.Google Scholar
  2. 2.
    Dobrovolsky, G., The Importance of Soil Sustaining Biodiversity, Transaction 15th World Congress of Soil Science, Acapulco, 1994, vol. 4b, pp. 75–76.Google Scholar
  3. 3.
    Dobrovol'skaya, T.G., Lysak, L.V., and Zvyagintsev, D.G., Soils and Microbial Diversity, Pochvovedenie, 1996, no. 6, pp. 699–704.Google Scholar
  4. 4.
    Zvyagintsev, D.G., Bab'eva, I.P., Zenova, G.M., and Polyanskaya, L.M., Biodiversity of Fungi and Actinomycetes and Their Ecological Functions, Pochvovedenie, 1996, no. 6, pp. 705–713.Google Scholar
  5. 5.
    Kennedy, A.C. and Gewin, V.L., Soil Microbial Diversity: Present and Future Considerations, Soil Sci., 1997, vol. 162, no. 9, pp. 607–617.Google Scholar
  6. 6.
    Dobrovol'skii, G.V., Importance of Soils in the Preservation of Biodiversity, Pochvovedenie, 1996, no. 6, pp. 694–698.Google Scholar
  7. 7.
    Tate, R.L., Soil Microbial Diversity Research: Whither to Now?, Soil Sci., 1997, vol. 162, no. 9, pp. 605–606.Google Scholar
  8. 8.
    Zvyagintsev, D.G., Pochva i mikroorganizmy (Soil and Microorganisms), Moscow: Mosk. Gos. Univ., 1987.Google Scholar
  9. 9.
    Rondon, M.R., Goodman, R.M., and Handelsman, J., The Earth's Bounty: Assessing and Accessing Soil Microbial Diversity, Trends Biotechnol., 1999, vol. 17, pp. 403–409.Google Scholar
  10. 10.
    Torsvik, V., Goksoyr, J., and Daae, F.L., High Diversity in DNA of Soil Bacteria, Appl. Environ. Microbiol., 1990, vol. 56, pp. 782–787.Google Scholar
  11. 11.
    Torsvik, V., Sorheim, R., and Goksoyr, J., Total Bacterial Diversity in Soil and Sediment Communities: A Review, J. Industr. Microbiol., 1996, vol. 17, pp. 170–178.Google Scholar
  12. 12.
    Chandler, D.P., Brockman, F.J., and Fredrickson, J.K., Use of 16SrDNA Clone Libraries to Study Changes in a Microbial Community Resulting from Ex Situ Perturbation of a Subsurface Sediment, FEMS Microbiol. Rev., 1997, vol. 20, nos. 3-4, pp. 217–230.Google Scholar
  13. 13.
    McVeigh Munro, J. and Embley, T.M., Molecular Evidence for the Presence of Novel Actinomycete Lineages in a Temperate Forest Soil, J. Industr. Microbiol., 1996, vol. 17, pp. 197–204.Google Scholar
  14. 14.
    Harris, D., Analysis of DNA Extracted from Microbial Communities, Beyond the Biomass, Ritz, K., Dighton, J., and Gillre, K.E., Eds., Chichester: Wiley, 1994, pp. 111–118.Google Scholar
  15. 15.
    Amann, R.I., Ludwig, W., and Schleifer, K.-H., Phylogenetic Identification and In Situ Detection of Individual Microbial Cells without Cultivation, Microbiol. Rev., 1995, vol. 59, no. 1, pp. 143–169.Google Scholar
  16. 16.
    Britten, R.Y. and Kohne, D.E., Repeated Sequences in DNA, Science, 1968, vol. 161, no. 3841, pp. 529–540.Google Scholar
  17. 17.
    Ward, N., Rainey, F.A., Gobel, B., and Stackebrandt, E., Identifying and Culturing the “Unculturables”: a Challenge for Microbiologists, Microbial Diversity and Ecosystem Function, Allsopp, D., Colwell, R., and Hawksworth, D., Eds., New York: CAB International, 1995, pp. 89–108.Google Scholar
  18. 18.
    Liesack, W. and Stackebrandt, E., Occurrence of Novel Groups of the Domain Bacteria as Revealed by Analysis of Genetic Material Isolated from an Australian Terrestrial Environment, J. Bacteriol., 1992, vol. 74, no. 15, pp. 5071–5078.Google Scholar
  19. 19.
    Stackebrandt, E., Liesack, W., and Goebel, B.M., Bacterial Diversity in a Soil Sample from a Subtropical Australian Environment as Determined by 16S rDNA Analysis, FASEB J., 1993, vol. 7, pp. 232–236.Google Scholar
  20. 20.
    Ueda, T., Suga, Y., and Matsuguchi, T., Molecular Phylogenetic Analysis of a Soil Microbial Community in a Soybean Field, Eur. J. Soil Sci., 1995, vol. 46, pp. 415–421.Google Scholar
  21. 21.
    Borneman, J., Skroch, P.W., O'Sullivan, K.M., Palus, J.A., Rumjanek, N.G., Jansen, J.L., Nienhuis, J., and Triplett, E.W., Molecular Microbial Diversity of an Agricultural Soil in Wisconsin, Appl. Environ. Microbiol., 1996, vol. 62, no. 6, pp. 1935–1942.Google Scholar
  22. 22.
    Heuer, H., Krsek, M., Baker, P., Smalla, K., and Wellington, E., Analysis of Actinomycete Communities by Specific Amplification of Gene Encoding 16S rRNA and Gel-Electrophoretic Separation in Denaturing Gradients, Appl. Environ. Microbiol., 1997, vol. 63, no. 8, pp. 3233–3241.Google Scholar
  23. 23.
    Woese, C.R., Bacterial Evolution, Microbiol. Rev., 1987, vol. 51, pp. 221–271.Google Scholar
  24. 24.
    Olsen, G.J., Woese, C.R., and Overbeek, R., The Winds of (Evolutionary) Change: Breathing New Life into Microbiology, J. Bacteriol., 1994, vol. 176, no. 1, pp. 1–6.Google Scholar
  25. 25.
    Swings, J., Exploration of Prokaryotic Diversity and Ecosystem Function, Microbial Diversity and Ecosystem Function, Allsopp, D., Colwell, R.R., and Hawksworth, D.L., Eds., New York: CAB International, 1995, pp. 371–379.Google Scholar
  26. 26.
    Vandamme, P., Pot, B., Gillis, M., de Vos, P., Kersters, K., and Swings, J., Polyphasic Taxonomy, a Consensus Approach to Bacterial Systematics, Microbiol. Rev., 1996, vol. 60, pp. 407–438.Google Scholar
  27. 27.
    Amikam, D., Glaser, G., and Razin, S., Mycoplasmas (Mollicutes) Have a Low Number of rRNA Genes, J. Bacteriol., 1984, vol. 158, pp. 376–378.Google Scholar
  28. 28.
    Jarvis, E.D., Widom, R.L., LaFauci, G., Setoguchi, Y., Richter, J.R., and Rudner, R., Chromosomal Organization of rRNA Operons in Bacillus subtilis, Genetics, 1988, vol. 120, pp. 625–635.Google Scholar
  29. 29.
    Aseeva, I.V., Panikov, N.S., and Chursina, O.T., Content and Composition of Nucleic Acids in Soddy Podzolic Soils, Vestn. Mosk. Univ. Ser. 17: Pochvoved., 1977, no. 1, pp. 85–91.Google Scholar
  30. 30.
    Rainey, P.B., Bailey, M.J., and Thompson, I.P., Phenotypic and Genotypic Diversity of Fluorescent Pseudomonads Isolated from Field-Grown Sugar Beet, Microbiology (UK), 1994, vol. 140, pp. 2315–2331.Google Scholar
  31. 31.
    Britschgi, T.B. and Giovannoni, S.J., Phylogenetic Analysis of a Natural Marine Bacterioplankton Population by rRNA Gene Cloning and Sequencing, Appl. Environ. Microbiol., 1991, vol. 57, no. 5, pp. 1707–1713.Google Scholar
  32. 32.
    Reysenbach, A.L., Giver, L.J., Wickham, G.S., and Pace, N.R., Differential Amplification of rRNA Genes by Polymerase Chain Reaction, Appl. Environ. Microbiol., 1992, vol. 58, pp. 3417–3418.Google Scholar
  33. 33.
    Amann, R.I., Stromley, R., Devereux, R., Key, R., and Stahl, D.A., Molecular and Microscopic Identification of Sulfate-Reducing Bacteria in Multispecies Biofilms, Appl. Environ. Microbiol., 1992, vol. 58, pp. 614–623.Google Scholar
  34. 34.
    Manz, W., Amann, R.I., Ludwig, W., and Schleifer, R.-H., Phylogenetic Oligodeoxynucleotide Probes the Major Subclasses of Proteobacteria: Problems and Solutions, J. Syst. Appl. Microbiol., 1992, vol. 15, pp. 593–600.Google Scholar
  35. 35.
    Maniatis, T., Fritsch, E.F., and Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor: Cold Spring Harbor Lab., 1982. Translated under the title Molekulyarnoe klonirovanie, Moscow: Mir, 1984.Google Scholar
  36. 36.
    Fuhrman, J.A., McCallum, K., and Davis, A.A., Novel Major Archaebacterial Group from Marine Plankton, Nature, 1994, vol. 356, pp. 148–149.Google Scholar
  37. 37.
    DeLong, E.F., Wu, K.Y., Prezelin, B.B., and Jovine, R.V., High Abundance of Archaea in Antarctic Marine Picoplankton, Nature, vol. 371, pp. 695-697.Google Scholar
  38. 38.
    Nesterenko, O.A., Kvasnikov, E.I., and Nogina, T.M., Nokardiopodobnye i korinepodobnye bakterii (Nocardioform and Coryneform Bacteria), Kiev: Naukova Dumka, 1985.Google Scholar
  39. 39.
    Zenova, G.M., Gracheva, T.A., Manucharova, N.A., and Zvyagintsev, D.G., Actinomycetous Communities in Forest Ecosystems, Pochvovedenie, 1996, no. 2, pp. 1347–1351.Google Scholar
  40. 40.
    Galatenko, O.A., Preobrazhenskaya, T.P., and Terekhova, L.P., Isolation of Actinomadura from Soils, Poisk produtsentov antibiotikov sredi aktinomitsetov redkikh rodov (Screening for Antibiotic Producers among Rare Actinomycetous Genera), Alma-Ata: Gylym, 1990, pp. 13–19.Google Scholar
  41. 41.
    Zenova, G.M. and Zvyagintsev, D.G., Actinomycetes in Terrestrial Ecosystems, Zh. Obshch. Biol., 1994, vol. 55, no. 2, pp. 198–210.Google Scholar
  42. 42.
    Zenova, G.M. and Zvyagintsev, D.G., Ecological Status of Actinomycetes of the Genus Micromonospora, Pochvovedenie, 1997, no. 3, pp. 376–383.Google Scholar
  43. 43.
    Hiorns, W.D., Methe, B.A., and Nierzwicki-Baner, S.A., Bacterial Diversity in Adirondack Mountain Lakes as Revealed by 16S RNA Gene Sequences, Appl. Environ. Microbiol., vol. 63, no. 7, pp. 2957-2960.Google Scholar
  44. 44.
    Prokaryotes: A Handbook on Habitats, Isolation and Identification of Bacteria, Starr, M.P. et al., Eds., Berlin: Springer, 1981, vols. 1-2.Google Scholar
  45. 45.
    Kuske, C.R., Barns, S.M., and Busch, J.D., Diverse Uncultivated Bacterial Groups from Soils of the Arid Southwestern United States That Are Present in Many Geographic Regions, Appl. Environ. Microbiol., 1997, vol. 63, no. 9, pp. 3614–3621.Google Scholar
  46. 46.
    Hugenholtz, P., Goebel, B.M., and Pace, N.R., Impact of Culture-Independent Studies on the Emerging Phylogenetic View of Bacterial Diversity, J. Bacteriol., 1998, vol. 180, no. 18, pp. 4765–4774.Google Scholar
  47. 47.
    Golovlev, E.L., About Old Problems in the New Bacterial Systematics, Mikrobiologiya, 1998, vol. 67, no. 2, pp. 281–286.Google Scholar
  48. 48.
    Chernov, I.Yu., Microbial Diversity: New Potentiality of the Old Method, Mikrobiologiya, 1997, vol. 66, no. 1, pp. 107–113.Google Scholar
  49. 49.
    Zvyagintsev, D.G., Dobrovol'skaya, T.G., Polyanskaya, L.M., and Chernov, I.Yu., Principles Underlying the Ecological Evaluation of the Microbial Resources of Soils, Pochvovedenie, 1994, no. 4, pp. 65–73.Google Scholar
  50. 50.
    Dobrovol'skaya, T.G., Chernov, I.Yu., and Zvyagintsev, D.G., About the Structural Characteristics of Bacterial Communities, Mikrobiologiya, 1997, vol. 66, no. 3, pp. 408–414.Google Scholar
  51. 51.
    Dobrovol'skaya, T.G., Chernov, I.Yu., Evtushenko, L.I., and Zvyagintsev, D.G., Biodiversity of Saprotrophic Bacteria in Arid Biogeocenoses, Usp. Sovrem. Biol., 1999, vol. 119, no. 2, pp. 151–164.Google Scholar
  52. 52.
    Zvyagintsev, D.G., Dobrovol'skaya, T.G., Bab'eva, I.P., Zenova, G.M., Lysak, L.V., Polyanskaya, L.M., and Chernov, I.Yu., The Structural and Functional Organization of Microbial Communities, Ekologiya v Rossii na rubezhe XXI veka (nazemnye ekosistemy) (Ecology in Russia at the Threshold of the 21st Century), Moscow: Nauchnyi Mir, 1999, pp. 147–180.Google Scholar
  53. 53.
    Dobrovol'skii, G.V. and Nikitin, E.D., Funktsii pochv v biosfere i ekosistemakh (Role of Soils in the Biosphere and Ecosystems), Moscow: Nauka, 1990.Google Scholar
  54. 54.
    Dobrovol'skaya, T.G., Skvortsova, I.N., and Lysak, L.V., Metody vydeleniya i identifikatsii pochvennykh bakterii (Methods for the Isolation and Identification of Soil Bacteria), Moscow: Mosk. Gos. Univ., 1989.Google Scholar
  55. 55.
    Zenova, G.M., Chernov, I.Yu., Gracheva, T.A., and Zvyagintsev, D.G., The Structure of Arid Actinomycetous Complexes, Mikrobiologiya, 1996, vol. 65, no. 5, pp. 704–710.Google Scholar
  56. 56.
    Zvyagintsev, D.G., Bab'eva, I.P., Dobrovol'skaya, T.G., Zenova, G.M., Lysak, L.V., and Marfenina, O.E., Vertical Structure of Microbial Communities in Forest Biogeocenoses, Mikrobiologiya, 1993, vol. 62, no. 1, pp. 75–36.Google Scholar
  57. 57.
    Zvyagintsev, D.G., Polyanskaya, L.M., Zenova, G.M., and Babkina, N.I., Dynamics of the Actinomycetous Mycelium Length and Prokaryotic Population in the Intestinal Tract of Invertebrates, Mikrobiologiya, 1996, vol. 65, no. 2, pp. 269–276.Google Scholar
  58. 58.
    Dobrovol'skaya, T.G., Chernov, I.Yu., Lysak, L.V., Zenova, G.M., Gracheva, T.A., and Zvyagintsev, D.G., Bacterial Communities in the Kyzylkum Desert: Spatial Dispersion and Taxonomic Composition, Mikrobiologiya, 1994, vol. 63, no. 2, pp. 334–343.Google Scholar
  59. 59.
    Tiunov, A.V., Dobrovol'skaya, T.G., and Polyanskaya, L.M., Microbial Community of the Burrow Walls of the Earthworm Lumbricus terrestris L., Mikrobiologiya, 1997, vol. 66, no. 3, pp. 415–420.Google Scholar
  60. 60.
    Dobrovol'skaya, T.G., Tret'yakova, E.B., Gebries, G., and Tiunov, A.V., Effect of Earthworms on the Formation of the Soil Bacterial Complex under Laboratory Conditions, Vestn. Mosk. Univ. Ser. 17: Pochvoved., no. 4, pp. 53-59.Google Scholar
  61. 61.
    Byzov, B.A., Chernjakovskaya, T.F., Zenova, G.M., and Dobrovolskaya, T.G., Bacterial Communities Associated with Soil Diplopods, Pedobiology, 1996, vol. 40, pp. 67–79.Google Scholar
  62. 62.
    Zenova, G.M., Babkina, N.I., Polyanskaya, L.M., and Zvyagintsev, D.G., Actinomycetes in the Intestinal Tract of Soil Invertebrates Eating Vermicompost and Litter, Mikrobiologiya, 1996, vol. 65, no. 3, pp. 409–415.Google Scholar
  63. 63.
    Aristovskaya, T.V., Mikrobiologiya podzolistykh pochv (The Microbiology of Podzolic Soils), Moscow: Nauka, 1965.Google Scholar
  64. 64.
    Aristovskaya, T.V., Mikrobiologiya protsessov pochvoobrazovaniya (The Microbiology of Soil Formation), Leningrad: Nauka, 1980.Google Scholar
  65. 65.
    Zvyagintseva, I.S., Halobacteria, Usp. Mikrobiol., Moscow: Nauka, 1989, pp. 112–136.Google Scholar
  66. 66.
    Zvyagintseva, I.S. and Tarasov, A.L., Extremely Halophilic Bacteria from Saline Soils, Mikrobiologiya, 1987, vol. 56, no. 5, pp. 839–844.Google Scholar
  67. 67.
    Lysak, L.V., Troshin, D.V., and Chernov, I.Yu., The Bacterial Communities of Alkaline Soils, Mikrobiologiya, 1994, vol. 63, no. 4, pp. 721–729.Google Scholar
  68. 68.
    Nelidov, S.N., Microbiological Characteristics of Rice Paddy Soils, Pochvovedenie, 1993, no. 4, pp. 721–729.Google Scholar
  69. 69.
    Golovlev, E.L., Another State of Non-Spore-forming Bacteria, Mikrobiologiya, 1998, vol. 67, no. 6, pp. 725–735.Google Scholar
  70. 70.
    Kozhevin, P.A., Mikrobnye populyatsii v prirode (Microbial Populations in Nature), Moscow: Mosk. Gos. Univ., 1989.Google Scholar
  71. 71.
    Bergey's Manual of Systematic Bacteriology, 9th ed., Holt, J.G. et al., Eds., Baltimore: Williams & Wilkins, 1993. Translated under the title Opredelitel' bakterii Berdzhi, Moscow: Mir, 1997.Google Scholar
  72. 72.
    Kalakutskii, L.V. and Agre, N.S., Razvitie aktinomitsetov (Development of Actinomycetes), Moscow: Nauka, 1977, pp. 247–256.Google Scholar
  73. 73.
    Maidak, B.L., Cole, J.R., Parker, C.T., et al., A New Version of the RDP (Ribosomal Database Project), Nucleic Acids Res., 1999, vol. 27, no. 1, pp. 171–173.Google Scholar
  74. 74.
    Watts, J.E.M. and Wellington, E.M., Bacterial Community Analysis in Polluted Soils Using Molecular and Metabolic Techniques, Abstr. ASM Conference on Microbial Biodiversity (August 5-8, 1999), Chicago, p. 42.Google Scholar
  75. 75.
    Luedemann, H., Henkel, A., Arth, J., and Liesack, W., Changes in the Bacterial Community Structure along the Vertical Oxygen Gradient of Flooded Soil Cores, as Revealed by T-RFLP Analysis of 16S rRNA and Their Encoding Genes, Abstr. ASM Conference on Microbial Biodiversity (August 5-8, 1999), Chicago, p. 30.Google Scholar
  76. 76.
    Wintringerode, F., Von, Landt, O., Gobel, U.B., RNAmediated PCR Clamping for Selective Recovery of Novel Phylogenetic Groups from Complex Microbial Consortia, Abstr. ASM Conference on Microbial Biodiversity (August 5-8, 1999), Chicago, p. 42.Google Scholar
  77. 77.
    Peacocki, A.D., Machaughtoni, et al., Evaluating the Diversity of Soil Microbial Communities Using Molecular Techniques and Established Ecological Indexes, Abstr. ASM Conference on Microbial Biodiversity (August 5-8, 1999), Chicago, p. 15.Google Scholar
  78. 78.
    Zavarzin, G.A., Reserves for Microbes, Prirodaz, 1990, no. 2, pp. 39–45.Google Scholar
  79. 79.
    Zvyagintsev, D.G., Microorganisms in Permafrost, Ecological Microbiology, Harwood, 1995, part 2, pp. 1–37.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2001

Authors and Affiliations

  • T. G. Dobrovol'skaya
    • 1
  • L. V. Lysak
    • 1
  • G. M. Zenova
    • 1
  • D. G. Zvyagintsev
    • 1
  1. 1.Department of Soil Biology, Faculty of Soil ScienceMoscow State University, Vorob'evy goryMoscowRussia

Personalised recommendations