Geometriae Dedicata

, Volume 84, Issue 1–3, pp 81–99

Dynamics of the Action of a CAT(0) Group on the Boundary

  • Kim E. Ruane


The main theorem here gives a geometric condition on the fixed point sets of two hyperbolic isometries of a CAT(0) group which guarantees that the subgroup generated by the two elements contains a free subgroup. A result in section 3 shows that an element extends to the identity on the boundary if and only if the element is virtually central in the CAT(0) group. Finally, the two dimensional case is considered in the last section of the paper and there it is shown that powers of two hyperbolic isometries commute if and only if a geometric condition on the fixed point sets is satisfied.

CAT(0) spaces boundaries of groups 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexandrov, A. D.: A theorem on triangles in a metric space and some applications, Trudy Mat. Inst. Steklov. 38 (1951), 5-23 (Russian).Google Scholar
  2. 2.
    Ballman, W.: Axial isometries of manifolds of nonpositive curvature, Math. Ann. 259 (1982), 131-144.Google Scholar
  3. 3.
    Ballman, W. and Brin, M.: Orbihedra of Nonpositive Curvature, Inst. Hautes Etudes Sci. Publ. Math. 82 (1995), 169-209.Google Scholar
  4. 4.
    Ballman W., Gromov, M. and Schroeder, V.: Manifolds of Nonpositive Curvature, Birkhäuser, Basel, 1985.Google Scholar
  5. 5.
    Bowditch, B.: Cut points and canonical splittings of hyperbolic groups, Acta Math. 180 (1998), 145-186.Google Scholar
  6. 6.
    Bowers, P. and Ruane K.: Boundaries of nonpositively curved groups of the form G × ℤ n, Glasgow Math. J. 38 (1996), 177-189.Google Scholar
  7. 7.
    Bridson, M. R. and Haefliger, A.: Metric spaces of non-positive curvature, unpublished.Google Scholar
  8. 8.
    Eberlein, P.: Geometry of Nonpositively Curved Manifolds, Chicago Lectures in Math., University of Chicago Press, 1996.Google Scholar
  9. 9.
    Gromov, M.: Hyperbolic groups, In: S. M. Gersten (ed.), Essays in Group Theory, Springer-Verlag, New York, 1987, 75-264.Google Scholar
  10. 10.
    Kleiner, B.: Local structure of length spaces with curvature bounded above, to appear in Math. Zeit, 1997.Google Scholar
  11. 11.
    Leeb, B.: A characterization of irreducible symmetric spaces and Euclidean buildings of higher rank by their asymptotic geometry, Preprint, 1997.Google Scholar
  12. 12.
    Lyndon, R. C. and Schupp, P. E.: Combinatorial Group Theory, Springer-Verlag, New York, 1977.Google Scholar
  13. 13.
    Mihalik, M. and Ruane, K.: CAT(0) HNN-extensions with non-locally connected boundary, Topology Appl. 110(1) (2000), 83-98.Google Scholar
  14. 14.
    Ontaneda, P.: Local extendability of CAT(0) spaces, Preprint (1996).Google Scholar
  15. 15.
    Paulin, F.: Constructions of hyperbolic groups via hyperbolizations of polyhedra, In: E. Ghys, A. Haefliger, A. Verjovsky (eds.), Group Theory from a Geometrical Viewpoint, World Scientific, Singapore, 1991, pp. 313-328.Google Scholar
  16. 16.
    Swarup, G.: On the cut point conjecture, Elec. Res. Announ. Amer. Math. Soc. 2 (1996), 98-100.Google Scholar
  17. 17.
    Swenson, E.: Subgroups of negatively curved groups, Preprint (1993).Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Kim E. Ruane
    • 1
  1. 1.Department of MathematicsVanderbilt UniversityNashvilleU.S.A.

Personalised recommendations