Antonie van Leeuwenhoek

, Volume 79, Issue 2, pp 127–133

Phylogeny of Streptomyces species and evidence for horizontal transfer of entire and partial antibiotic gene clusters

  • S. Egan
  • P. Wiener
  • D. Kallifidas
  • E.M.H. Wellington
Article

Abstract

The phylogenetic relationships of a collection of streptomycete soil isolates and type strains were resolved by sequence analysis of trpB,a housekeeping gene involved in tryptophan biosynthesis. The analysis confirmed that two isolates were recipients in a gene transfer event, demonstrated by phylogenetic incongruency between trpB and strB1 trees. One strain had acquired the entire streptomycin biosynthetic cluster, whilst the other contained only strRAB1, the resistance gene and two flanking genes from the cluster. Sequence analysis of trpB, as part of a polyphasic approach, was a useful tool in determining intra-generic relationships within the genus Streptomyces.

antibiotic biosynthesis gene transfer phylogeny Streptomyces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cilia V, Lafay B & Christen R (1996) Sequence heterogeneities among 16S rRNA sequences, and their affect on phylogenetic analyses at the species level. Mol. Biol. Evol. 13: 451-461Google Scholar
  2. Christensen H & Olsen JE (1998) Phylogenetic relationships of salmonella based on DNA sequence comparison of atpD encoding the beta subunit of ATP synthase. FEMS Microbiol. Lett. 161: 89-96Google Scholar
  3. Egan S, Wiener P, Kallifidas D & Wellington EMH (1998) Transfer of streptomycin biosynthesis gene clusters within streptomycetes isolated from soil. Appl. Environ. Microbiol. 64: 5061-5063Google Scholar
  4. Eisen J (1995) The recA protein as a model molecule for molecular systematic studies of bacteria: Comparison of trees of recAs and 16S rRNAs from the same species. J. Mol. Evol. 41: 1105-1123Google Scholar
  5. Embley TM & Stackebrandt E (1994) The molecular phylogeny and systematics of the actinomycetes. Annu. Rev. Microbiol. 48: 257-289Google Scholar
  6. Felsenstein J (1993) PHYLIP. (Phylogeny Inference Package) version 3.5c. Distributed by the author. Department of Genetics, University of Washington, SeattleGoogle Scholar
  7. Haukka K, Lindstrom K & Young JPW (1996) Diversity of partial 16S rRNA sequences among and within strains of African rhizobia isolated from Scacia and Prosopis. Syst. Appl. Microbiol. 19: 352-359Google Scholar
  8. Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser, HM, Lydiate DJ, Smith CP, Ward JM & Schrempf H (1985) Genetic Manipulation of Streptomyces: A Laboratory Manual. The John Innes Foundation, Norwich, UKGoogle Scholar
  9. Huddlestone AS, Cresswell N, Neves NCP, Beringer JE, Baumberg S, Thomas DI & Wellington EMH (1997) Molecular detection of streptomycetes in Brazilian soils. Appl. Environ. Microbiol. 63: 1288-1297Google Scholar
  10. Kawamoto S & Ochi K (1998) Comparative ribosomal protein (L11 and L30) sequence analyses of several Streptomyces spp. commonly used in genetic studies. Int. J. Syst. Bacteriol. 48: 597-600Google Scholar
  11. Kim E, Kim H, Hong SP, Kang KH, Kho YH & Park Y (1993) Gene organization and primary structure of a ribosomal RNA gene cluster from Streptomyces griseus subsp. griseus. Gene 132: 21-31Google Scholar
  12. Kim SB, Falconer C, Williams E & Goodfellow m (1998) Streptomyces thermocarboxydovorans sp. nov. and Streptomyces thermocarboxydovorans sp. nov., two moderately thermophilic carboxydotrophic species from soil. Intl. J. Syst. Bacteriol. 48: 59-68Google Scholar
  13. Koch C, Kroppenstedt R & Stackebrandt E (1996) Intrageneric relationships of the actinomycete genus Micromonospora. Int. J. Syst. Bacteriol. 46: 383-387Google Scholar
  14. Labeda DP (1998) DNA relatedness among the Streptomyces fulvissimis and Streptomyces griseoviridis phenotypic cluster groups. Int. J. Syst. Bacteriol. 48: 829-832Google Scholar
  15. Liu SL & Sanderson KE (1998) Homologous recombination between rrn operons rearranges the chromosome in host specialized species of Salmonella. FEMS Microbiol. Lett. 164: 275-281Google Scholar
  16. Ninet B, Monod M, Emler S, Pawlowski J, Metral C, Rohner P, Auckenthaler R & Hirschel B (1996) Two different 16S rRNA genes in a mycobacterial strain. J. Clin. Microbiol. 34: 2531-2536Google Scholar
  17. Pissowotski K, Mansouri K & Piepersberg W (1991) Genetics of streptomycin production in S. griseus: molecular structure and putative function of genes strELMB2N. Mol. Gen. Genet. 231: 113-123Google Scholar
  18. Wang Y, Zhang ZS & Ramanan N (1997) The actinomycete Thermomonospora bispora contains two distinct types of transcriptionally active 16S rRNA genes. J. Bacteriol. 179: 3270-3276Google Scholar
  19. Wiener P, Egan S & Wellington EMH (1998) Evidence for transfer of antibiotic resistance genes in soil populations of streptomycetes. Mol. Ecol. 7: 1205-1216Google Scholar
  20. Yamamoto S & Harayama S (1996) Phylogenetic analysis of Acinetobacter strains based on the nucleotide sequences of gyrB genes and on the amino acid sequences of their products. Int. J. Syst. Bacteriol. 46: 506-511Google Scholar
  21. Yap WH, Zhang Z & Wang Y (1999) Distinct types of rRNA operons exist in the genome of the actinomycete Thermomonospora chromogena and evidence for horizontal transfer of an entire rRNA operon. J. Bact. 181: 5201-5209Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • S. Egan
    • 1
  • P. Wiener
    • 1
  • D. Kallifidas
    • 1
  • E.M.H. Wellington
    • 1
  1. 1.Department of Biological SciencesUniversity of WarwickCoventryUK

Personalised recommendations