Antonie van Leeuwenhoek

, Volume 78, Issue 3–4, pp 399–405 | Cite as

Rare genera of actinomycetes as potential producers of new antibiotics

  • Ameriga Lazzarini
  • Linda Cavaletti
  • Giorgio Toppo
  • Flavia Marinelli
Article

Abstract

A literature survey covering more than twenty-three thousand bioactive microbial products including eight thousand antiinfectives demonstrated the increasing relevance of the so called 'rare' actinomycetes as a source of new antibiotics. Past and present efforts in the isolation of rare actinomycetes have enriched the Biosearch Italia Strain Collection with more than twenty thousand strains, showing that, when selective isolation methods are developed and extensively applied, some genera, such as Actinomadura, Actinoplanes, Micromonospora, Microtetraspora, are not rare at all and can be recovered from many soil samples. The current focus is on the isolation of members of Streptosporangiaceae family, given their promising chemical diversity.

actinomycetes antibiotics microbial product database strain isolation Streptosporangiaceae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atsushi T, Ryuji F & Hirotada K (1975) Antibiotic sporacuracin production. Japan Patent 75,125,094Google Scholar
  2. Bardone MR, Paternoster M & Coronelli C (1978) Teichomycins, new antibiotics from Actinoplanes teichomyceticus nov.sp. J. Antibiotics 31: 170–177Google Scholar
  3. Bérdy J, Aszalos A, Bostian M & McNitt KL (1980–1982) Handbook of Antibiotic Compounds, Vols I-X, CRC Press, Boca Raton, Florida, USAGoogle Scholar
  4. Berg D, Frommer W, Schmidt D, Schmidt RR & Schafer D (1979) Organisch-chemische verbindung, mikrobiologische verfahren zu ihrer herstellung sowie ihre verwendung. German Patent 27,58,008Google Scholar
  5. Bischoff E, Vonhugo H, Scheer M, Schroeder T & Schaefer D (1981) Growth promoting active substance mixture from Streptosporangium species SS-48. German Patent 30,05,696Google Scholar
  6. Bradner WT, Bush JA & Nettleton DE (1978). Figaroic acid antibiotic complex obtained from ATCC 31129. US Patent 4,112,071Google Scholar
  7. Brazhnikova MG, Zbarsky VB, Kudinova MK, Muravieva LI, Ponomarenko VI & Potapova NP (1973) Carminomycin, a new antibiotic anthracycline. Antibiotiki. 18: 678–681Google Scholar
  8. Bulina TI, Terekhova LP & Tyurin MV (1998) Use of electric pulses for isolation of actinomycetes from soil. Mikrobiologiia, 67: 556–560Google Scholar
  9. Cavalleri B, Arnone A, Di Modugno E, Nasini G & Goldstein BP (1988) Structure and biological activity of lipiarmycin B. J. Antibiotics 41: 308–315Google Scholar
  10. Celmer WD, Cullen WP, Moppett CE, Routien JB, Jefferson MT, Shibakawa R & Tone J (1977). Mixture of antibiotics produced by new species of Streptosporangium. US Patent 4,032,632Google Scholar
  11. Celmer WD, Cullen WP, Moppett CE, Routien JB, Watts PC, Shibakawa R & Tone J (1978). Polypeptide antibiotic produced by new subspecies of Streptosporangium. US Patent 4,083,963Google Scholar
  12. Ciabatti R & Cavalleri B (1989) Ramoplanin (A/16686): a new glycodepsipeptide antibiotic from Actinoplanes. Progr. Ind. Microbiol. 27: 205–219Google Scholar
  13. Coronelli C, Bardone MR & Pagani H (1975) Antibiotic activities from Streptosporangium vulgare ATCC 21096. US Patent 3,899,396Google Scholar
  14. Coronelli C, Pagani H, Bardone MR & Lancini GC (1974) Purpuromycin, a new antibiotic isolated from Actinoplanes ianthinogenes n.sp. J Antibiotics 27: 161–168Google Scholar
  15. Coronelli C & Thiemann J (1969) Antibiotic selenomycin from Streptosporangium brasiliense German Patent 2,028,986Google Scholar
  16. Debono M & Gordee RS (1994) Antibiotics that inhibit fungal cell wall development. Annu Rev Microbiol 48: 471–497Google Scholar
  17. Gauze GF, Preobrazhenskaia TP, Ivanitskaia LP & Sveshnikova MA (1969) Production of the antibiotic sibiromycin by the Streptosporangium sibiricum sp. nov. culture. Antibiotiki 14: 963–969Google Scholar
  18. Ghazal SA & Abd El-Aziz ZK (1993) Sporangirosomycin, a new chromopeptolide antibiotic produced by Streptosporangium roseum sub. sp. antibioticus sub. sp. nova. Al-Azhar Bull. Sci. 4: 265–274Google Scholar
  19. Goldstein BP, Selva E, Gastaldo L, Berti M, Pallanza R, Ripamonti F, Ferrari P, Denaro M, Arioli V & Cassani G (1987) A40926, a new glycopeptide antibiotic with anti-Neisseria activity. Antimicrob. Agents Chemother. 31: 1961–1966Google Scholar
  20. Hacene H, Boudjellal F & Lefebvre G (1998) AH7, a non polyenic antifungal antibiotic produced by a new strain of Streptosporangium roseum. Microbios 96: 103–109Google Scholar
  21. Hayakawa M, Iino H, Takeuchi S & Yamazaki T (1997) Application of a method incorporating treatment with chloramine-T for the selective isolation of Streptosporangiaceae from soil. J. Ferm. Bioeng. 84: 599–602Google Scholar
  22. Hayakawa M, Kajiura T & Nonomura H (1991) New methods for the highly selective isolation of Streptosporangium and Dactylosporangium from soil J. Ferm. Bioeng. 72: 327–333Google Scholar
  23. Hayakawa M, Sadakata T, Kajiura T & Nonomura H (1991) New methods for the highly selective isolation of Micromonospora and Microbispora from soil J. Ferm. Bioeng. 72: 320–326Google Scholar
  24. Hayakawa M, Tamura T & Nonomura H (1991) Selective isolation of Actinoplanes and Dactylosporangium from soil by using gamma-collidine as the chemoattractant J. Ferm. Bioeng. 72: 426–432Google Scholar
  25. Ikemoto T, Matsunaga H, Konishi K, Okazaki T, Enokita R & Torikata A (1983) Aculeximycin, a new antibiotic from Streptosporangium albidum. I. Taxonomy of producing organism and fermentation. J Antibiotics 36: 1093–1096Google Scholar
  26. Ikemoto T, Katayama T, Shiraishi A & Haneishi T (1983) Aculeximycin, a new antibiotic from Streptosporangium albidum. II. Isolation, physicochemical and biological properties. J Antibiotics 36: 1097–1100Google Scholar
  27. Ito J et al. (1987) Novel antibiotic substance SF-2381A and SF-2381B and production thereof. Japan Patent 62,040,293Google Scholar
  28. Kawamoto I, Takasawa S, Okachi R, Kohakura M, Takahashi I & Nara T (1975) A new antibiotic, victomycin (XK 49–1–B-2). I. Taxonomy and production of the producing organism. J Antibiotics 28: 358–365Google Scholar
  29. Kizuka M., Enokita R., Takahashi K & Okazaki T. (1997) Distribution of the actinomycetes in the Republic of South Africa investigated using a newly developed isolation method. Actinomycetol. 11: 54–58Google Scholar
  30. Lancini G & Lorenzetti R (1993) Biotechnology of antibiotics and other bioactive microbial metabolites (pp. 49–57). Plenum Press, New York and LondonGoogle Scholar
  31. Li GP (1989) Isolation of actinomycetes for antibiotic screening. Chin. J. Antibiotics 14: 452–465Google Scholar
  32. Malabarba A, Landi M, Pallanza R & Cavalleri B (1985) Physicochemical and biological properties of actagardine and some acid hydrolysis products. J. Antibiotics 38: 1506–1511Google Scholar
  33. Michel KH & Yao RCF (1991) New lipoglycopeptide antibiotic A84575 complex-produced by submerged aerobic fermentation of Streptosporangium carneum and used to treat and prevent Gram-positive bacterial infections. EP 0424051Google Scholar
  34. Nash III CH, Shearer MC, Snader KM, Valenta JR & Cooper D (1981) Anthracycline antibiotics produced by Streptosporangium fragilis sp. nov. ATCC 31519. US Patent 4,293,546Google Scholar
  35. Okuda T, Ito Y, Yamaguchi T, Furumai T, Suzuki M & Tsuruoka M (1966) Sporaviridin, a new antibiotic produced by Streptosporangium viridogriseum nov. sp. J Antibiotics 19: 85–87Google Scholar
  36. Palleroni NJ (1980) A chemotactic method for the isolation of Actinoplanaceae. Arch. Microb. 128: 53–55Google Scholar
  37. Parenti F, Pagani H & Beretta G (1975) Lipiarmycin, a new antibiotic from Actinoplanes I. Description of the producer strain and fermentation studies. J. Antibiotics 28: 247–259Google Scholar
  38. Parenti F, Pagani H & Beretta G (1976) Gardimycin, a new antibiotic from Actinoplanes. I. Description of the producer strain and fermentation studies. J. Antibiotics 29: 501–506Google Scholar
  39. Patel M, Hegde V, Horan AC, Gullo PV, Loebenberg D, Marquez JA, Miller GH Puar MS & Waitz JA (1984) A novel phenazine antifungal antibiotic, 1,6–dihydroxy-2–chlorophenazine. Fermentation, isolation, structure and biological properties. J. Antibiotics 37: 943–948Google Scholar
  40. Pfefferle C, Breinholt J, Gurtler H & Fiedler HP (1997) 1–Hydroxy-4–methoxy-2–naphthoic acid, a hebicidal compound produced by Streptosporangium cinnabarinum ATCC 31213. J. Antibiotics 50: 1067–1068Google Scholar
  41. Rambelli F, Brigotti M, Zamboni M, Denaro M, Montanaro L & Sperti S (1898) Effect of the antibiotic purpuromycin on cell-free protein-synthesizing systems. Biochem J. 259: 307–310Google Scholar
  42. Sato Y et al. (1987) Novel antibiotic substance AI-RC262 and production thereof. Japan Patent 62,029,987Google Scholar
  43. Selva E, Beretta G, Montanini N, Saddler GS, Gastaldo L, Ferrari P, Lorenzetti R, Landini P, Ripamonti F, Goldstein BP, Berti M, Montanaro L & Denaro M (1991) Antibiotic GE2270 A: a novel inhibitor of bacterial protein synthesis. I. Isolation and characterization. J. Antibiotics 44: 693–701Google Scholar
  44. Shokichi O, Kunihiko K, Akiko S, Tamako T, Junko Y, Shouichi A, Shinij M, Yuji M, Takashi S, Takashi S & Masaji S (1988) New angiotensin converting enzyme inhibitors SF2513 A, B and C, produced by Streptosporangium nondiastaticum. Meiji Seika Kenkyu Nenpo 27: 46–54Google Scholar
  45. Sugano M, Hatano E, Hamada T, Okazaki H & Takamatsu Y (1997) New compound K4610422. Japan Patent 92,21,448Google Scholar
  46. Takasawa S, Kawamoto I, Takahashi I, Kohakura M, Okachi R, Sato S, Yamamoto M, Sato T & Nara T (1975) Platomycins A and B I. Taxonomy of the producing strain and production, isolation and biological properties of platomycins. J Antibiotics 28: 656–661Google Scholar
  47. Takizawa M, Hida T, Horiguchi T, Hiramoto A, Harada S & Tanida S (1995) TAN1511 A, B and C, microbial lipopeptides with GCSF inducing activity. J Antibiotics 48: 579–588Google Scholar
  48. Tamura A, Takeda I, Naruto S & Yoshimura Y (1971) Chloramphenicol from Streptosporangium viridogriseum var. kofuense. J Antibiotics 24: 270Google Scholar
  49. The Society for Actinomycetes Japan (1997) Atlas of Actinomycetes. Asakura Publishing Co., LtdGoogle Scholar
  50. Tomita F et al. (1985) Antibiotics DC-87–A and DC-87–B (1985) Japan Patent 60, 001,152Google Scholar
  51. Tsuguaki F, Takashi S, Takashi S, Hiroshi W, Junko Y, Michio K & Shigeharu I. (1979) The new antibiotic SF-2033. Japan Patent 79,122,202Google Scholar
  52. Tsurumi Y, Ohhata N, Iwamoto T, Shigematsu N, Sakamoto K, Nishikawa M, Kiyoto S & Okuhara M (1994) WS79089A, B and C, new endothelin converting enzyme inhibitors isolated from Streptosporangium roseum. No. 79089. Taxonomy, fermentation, isolation, physico-chemical properties and biological activities. J. Antibiotics 47: 619–630Google Scholar
  53. Umezawa I, Komiyama K, Takeshima H, Awaya J & Omura S (1976) A new antitumor antibiotic PO-357. J. Antibiotics 29: 1249–1251Google Scholar
  54. Umezawa I & Komiyama K (1983) Novel protein KUD-PC and preparation thereof. Japan Patent 58,198,422Google Scholar
  55. Westley JW (1977). Polyether antibiotics: versatile carboxylic acid ionophores produced by Streptomyces.Adv. Appl.Microbiol. 22: 177–220Google Scholar
  56. Williams ST & Wellington EMH (1982) Principles and problems of selective isolation of microbes. In: Bu'lock JD, Nisbet LJ & Winstanley DJ (Eds) Bioactive Microbial Products: Search and Discovery (pp. 9–26). Academic Press, LondonGoogle Scholar
  57. Zhang Z Wang Y & Ruan J (1998) Reclassification of Thermomonospora and Microtetraspora. Int. J. Syst. Bacteriol. 48: 411–422Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Ameriga Lazzarini
    • 1
  • Linda Cavaletti
    • 1
  • Giorgio Toppo
    • 1
  • Flavia Marinelli
    • 1
  1. 1.Biosearch Italia S.p.AGerenzano VareseItaly Author for correspondence)

Personalised recommendations