Advertisement

Mathematical Notes

, Volume 69, Issue 3–4, pp 578–581 | Cite as

About Distances between Points on the Plane

  • S. V. Konyagin
Article
  • 31 Downloads
distance between points on the plane Erdös conjecture Sárközy theorem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. Sárközy, Studia Sci. Math. Hungar., 11 (1976), 37–50.Google Scholar
  2. 2.
    A. Sárközy, Studia Sci. Math. Hungar., 11 (1976), 105–111.Google Scholar
  3. 3.
    P. Erdös and R. L. Graham, Old and New Problems and Results in Combinatorial Number Theory, Geneva, 1980.Google Scholar
  4. 4.
    V. G. Korenev, Introduction to the Theory of Bessel Functions [in Russian], Nauka, Moscow, 1971.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • S. V. Konyagin
    • 1
  1. 1.M. V. Lomonosov Moscow State UniversityRussia

Personalised recommendations