Behavior Genetics

, Volume 31, Issue 1, pp 79–91 | Cite as

Further Characterization and High-Resolution Mapping of Quantitative Trait Loci for Ethanol-Induced Locomotor Activity

  • Kristin Demarest
  • Jay Koyner
  • James McCaughranJr.
  • Laura Cipp
  • Robert Hitzemann


Differential sensitivity to the stimulant effects of ethanol on locomotor activity is determined in part by genetic differences. Among inbred strains of mice, moderate doses of ethanol (1-2 g/kg) stimulate locomotor activity in some strains, e.g., the DBA/2J (D2), but only mildly affect activity in other strains, e.g., C57BL/6J (B6) (Crabbe et al., 1982, 1983; Crabbe, 1986; Dudek and Phillips, 1990; Dudek et al., 1991; Dudek and Tritto, 1994). Quantitative trait loci (QTL) for the acute ethanol (1.5 g/kg) locomotor response has been identified in the BXD recombinant inbred (RI) series (N = 25 strains), a C57BL/6J × DBA/2J (B6D2) F2 intercross (N = 1800), and heterogeneous stock (HS) mice (N = 550). QTLs detected (p < .01) in the RI series were found on chromosomes 1, 2, and 6 and these QTLs were expressed in a time-dependent fashion. The QTLs on chromosomes 1 and 2 were confirmed in the F2 intercross at p < 10−7 or better. HS mice from G32 to G35 were used to fine-map the chromosome 2 QTL. Compared to the consensus map, the genetic map in the HS animals was expanded 10- to 15-fold. Over the region flanked by D2Mit94 to D2Mit304, three separate QTLs were detected in the HS animals. The data obtained confirm the usefulness of HS mice for the fine-mapping of QTLs to a resolution of 2 cM or less.

QTL mouse ethanol activity recombinant inbred fine-mapping 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barton, N. H., andTurelli M. (1989). Evolutionary quantitative genetics: How little do we know? Annu. Rev. Genet. 23: 337-370.Google Scholar
  2. Basten, C. J.,Weir, B. S., andZeng, Z. B. (1997). QTL Cartographer: A Reference Manual and Tutorial for QTL Mapping, Department of Statistics, North Carolina State University, Raleigh.Google Scholar
  3. Belknap, J. K.,Mitchell, S. R.,O'Toole, L. A.,Helms, M. L., andCrabbe, J. C. (1996). Type I and II error rates for quantitative trait loci (QTL) mapping studies using recombinant inbred mouse strains. Behav. Genet. 26: 149-160.Google Scholar
  4. Belknap, J. K.,Richards, S. P.,O'Toole, L. A.,Helms, M. L., andPhilips, T. J. (1997). Short-term selective breeding as a tool for QTL mapping: Ethanol preference drinking in mice. Behav. Genet. 27: 27-55.Google Scholar
  5. Buck, K. J.,Metten, P.,Belknap, J. K., andCrabbe, J. C. (1997). Quantitative trait loci involved in genetic predisposition to acute alcohol withdrawal in mice. J. Neurosci. 17: 3946-3955.Google Scholar
  6. Buck, K. J.,Metten, P.,Belknap, J. K., andCrabbe, J. C. (1999). Quantitative trait loci affecting risk for pentobarbital withdrawal map near alcohol withdrawal loci on mouse chromosomes 1, 4, and 11. Mammal. Genome 10: 431-437.Google Scholar
  7. Cheverud, J. M., andRoutman, E. J. (1995). Epistasis and its contribution of genetic variance components. Genetics 139: 1455-1461.Google Scholar
  8. Crabbe, J. C. (1986). Genetic differences in locomotor activation in mice. Pharm. Biochem. Behav. 25: 289-292.Google Scholar
  9. Crabbe, J. C.,Johnson, N. A.,Gray, D. K.,Kosobud, A., andYoung, E. R. (1982). Biphasic effects of ethanol on open field activity: Sensitivity and tolerance to C57BL/6N and DBA/2N mice. J. Comp. Physiol. Psych. 96: 440-451.Google Scholar
  10. Crabbe, J. C.,Kosobud, A.,Young, E. R., andJanowsky, J. S. (1983). Polygenic and single-gene determination of responses to ethanol in BXD/Ty recombinant inbred mouse strains. Neurobehav. Toxicol. Teratol. 5: 181-187.Google Scholar
  11. Crabbe, J. C.,Belknap, J. K., andBuck, K. J. (1994). Genetic animal models of alcohol and drug abuse. Science 264: 1715-1723.Google Scholar
  12. Crabbe, J. C.,Phillips, T. J.,Buck, K. J.,Cunningham, C. L., andBelknap, J. K. (1999). Identifying genes for alcohol and drug sensitivity: Recent progress and future directions. TINS 22: 173-179.Google Scholar
  13. Cudmore, R. H., Jr.,Meer, J., andManly, K. F. (1999). Map Manager XP User Manual, Department of Cellular and Molecular Biology at Roswell Park Cancer Institute, Buffalo, NY.Google Scholar
  14. Darvasi, A. (1998). Experimental strategies for the genetic dissection of complex traits in animal models. Nature Genet. 18: 19-24.Google Scholar
  15. Darvasi, A., andSoller, M. (1995). Advanced intercross lines, an experimental population for fine genetic mapping. Genetics 141: 1199-1207.Google Scholar
  16. Darvasi, A., andSoller, M. (1997). A simple method to calculate resolving power and confidence interval of QTL map location. Behav. Genet. 27: 125-132.Google Scholar
  17. Darvasi, A.,Weinreb, A.,Minke, V.,Weller, J. I., andSoller, M. (1993). Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics 134: 943-951.Google Scholar
  18. Demarest, K.,Hitzemann, B.,Mahjubi, E.,McCaughran, J., Jr., andHitzemann R. (1998). Further evidence that the central nucleus of the amygdala is associated with ethanol-induced activation. Alcohol Clin. Exp. Res. 22: 1531-1537.Google Scholar
  19. Demarest, K.,McCaughran, J., Jr.,Mahjubi, E.,Cipp, L., andHitzemann, R. (1999a). Identification of an acute ethanol response quantitative trait locus on mouse chromosome 2. J. Neurosci. 19: 549-561.Google Scholar
  20. Demarest, K.,Hitzemann, B.,Phillips, T. J., andHitzemann, R. (1999b). Ethanol-induced expression of c-Fos differentiates the FAST and SLOW selected lines of mice. Alcohol Clin. Exp. Res. 23: 87-95.Google Scholar
  21. Dietrich, W.,Katz, H.,Lincoln, S. E.,Shin, H.,Friedman, J.,Dracopoli, N., andLander, E. S. (1992). A genetic map of the mouse suitable for typing intraspecific crosses. Genetics 131: 423-447.Google Scholar
  22. Dietrich, W. F.,Miller, J. C.,Steen, R. G., et al. (1994). A genetic map of the mouse with 4,006 simple sequence length polymorphisms. Nature Genet. 7: 220-245.Google Scholar
  23. Dudek, B. C., andPhillips, T. J. (1990). Distinctions among sedative, disinhibitory, and ataxic properties of ethanol in inbred and selectively bred mice. Psychopharmacology 101: 93-99.Google Scholar
  24. Dudek, B. C., andTritto, T. (1994). Biometrical genetic analysis of ethanol' psychomotor stimulant effect. Alcohol Clin. Exp. Res. 18: 956-963.Google Scholar
  25. Dudek, B. C.,Phillips, T. J., andHahn, M. E. (1991). Genetic analysis of the biphasic nature of the alcohol dose-response curve. Alcohol Clin. Exp. Res. 15: 262-269.Google Scholar
  26. Falconer, D. S., andMackay, T. F. (1996). Introduction to Quantitative Genetics, 4th ed., Longman Press, Essex.Google Scholar
  27. Fisher, R. A. (1918). The correlation between relatives on the supposition of Mendelian inheritance. Trans. Roy. Soc. Edinburgh 52: 399-433.Google Scholar
  28. Flint, J.,Corley, R.,DeFries, J. C.,Fulker, D. W.,Gray, J. A.,Miller, S., andCollins, A. C. (1995). A simple genetic basis for a complex psychological trait in laboratory mice. Science 269: 1432-1435.Google Scholar
  29. Frankel, W. N.,Johnson, E. W., andLutz, C. M. (1995a). Congenic strains reveal effects of the epilepsy quantitative trait locus, El2, separate from other El loci. Mammal. Genome 6: 839-843.Google Scholar
  30. Frankel, W. N.,Valenzuela, A.,Lutz, C. M.,Johnson, E. W.,Dietrich, W. F., andCoffin, J. M. (1995b). New seizure frequency QTL and the complex genetics of epilepsy in EL mice. Mammal. Genome 6: 830-838.Google Scholar
  31. Gershenfeld, H. K., andPaul, S. M. (1997). Mapping quantitative trait loci for fear-like behavior in mice. Genomics 46: 1-8.Google Scholar
  32. Gora-Maslak, G.,McLearn, G. E.,Crabbe, J. C.,Phillips, T. J.,Belknap, J. K., andPlomin, R. (1991). Use of recombinant inbred strains to identify quantitative trait loci in psychopharmacology. Psychopharmacology 104: 413-424.Google Scholar
  33. Hitzemann, B., andHitzemann, R. (1997). Genetics, ethanol and the Fos response in the basal ganglia: A comparison of the C57BL/6J and DBA/2J inbred mouse strains. Alcohol Clin. Exp. Res. 21: 1497-1508.Google Scholar
  34. Hitzemann, B., andHitzemann, R. (1999). Chlordiazepoxide-induced expression of c-Fos in the central extended amygdala and other brain regions of the C57BL/6J and DBA/2J inbred mouse strains: Relationships to mechanisms of ethanol action. Alcohol Clin. Exp. Res. 23: 1158-1172.Google Scholar
  35. Hitzemann, B.,Dains, K., andHitzemann, R. (1994). Further studies on the relationship between dopamine cell density and haloperidol response. JPET 271: 969-976.Google Scholar
  36. Hitzemann, R. J.,Dains, K.,Bier-Langing, C. M., andZahniser, N. R. (1991). On the selection of mice for haloperidol response and non-response. Psychopharmacology 103: 244-250.Google Scholar
  37. Jiang, C., andZeng, Z. B. (1995). Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140: 1111-1127.Google Scholar
  38. Kanes, S.,Hitzemann, B., andHitzemann, R. (1996). Mapping the genes for haloperidol-induced catalepsy. JPET 277: 1016-1025.Google Scholar
  39. Lai, C.,Gore, M., andLemke, G. (1994). Structure, expression, and activity of Tyro 3, a neural adhesion-related receptor tyrosine kinase. Oncogene 9: 2567-2578.Google Scholar
  40. Lander, E. S., andBotstein, E. (1989). Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185-199.Google Scholar
  41. Lander, E., andKruglyak, L. (1995). Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nature Genet. 11: 241-247.Google Scholar
  42. Lincoln, S. E.,Daly, M. J., andLander, E. S. (1993). Mapping Genes Controlling Quantitative Traits Using MAPMAKER/QTL Ver-sion 1.1: A Tutorial and Reference Manual, Whitehead Institute for Biomedical Research, Cambridge, MA.Google Scholar
  43. Liu, J.,Mercer, J. M.,Stam, L. F.,Gibson, G. C.,Zeng, Z.-B., andLaurie, C. C. (1996). Genetic analysis of a morphological shape difference in the male genitalia of Drosophila simulans and D. mauritiana. Genetics 142: 1129-1145.Google Scholar
  44. Lynch, M., andWalsh, B. (1997). Genetics and Analysis of Quantitative Traits, Sinauer Associates, Sunderland, MA.Google Scholar
  45. Markel, P. D.,DeFries, J. C., andJohnson, T. E. (1995). Ethanol-induced anesthesia in inbred strains of long-sleep and short-sleep mice: A genetic analysis of repeated measures using censored data. Behav. Genet. 25: 67-73.Google Scholar
  46. Melo, J. A.,Shendure, J.,Pociask, K., andSilver, L. M. (1996). Identification of sex-specific quantitative trait loci controlling alcohol preference in C57BL/6 mice. Nature Genet. 13: 147-153.Google Scholar
  47. Patel, N. V., andHitzemann, R. (1999). Detection and mapping of quantitative trait loci for haloperidol-induced catalepsy in a C57BL/6J 3 DBA/2J F2 intercross. Behav. Genet. 29: 303-310.Google Scholar
  48. Paterson, A. H.,Lander, E. S.,Hewitt, J. D.,Peterson, S.,Lincoln, S. E., andTanksley, S. D. (1988). Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335: 721-726.Google Scholar
  49. Paterson, A. H.,Damon, S.,Hewitt, J. D.,Zamir, D.,Rabinowitch, H. D.,Lincoln, S. E.,Lander, E. S., andTanksley, S. D. (1991). Mendelian factors underlying quantitative traits in tomato: Comparison across species, generations, and environments. Genetics 127: 181-197.Google Scholar
  50. Phillips, T. J.,Crabbe, J. C.,Metten, P., andBelknap, J. K. (1994). Localization of genes affecting alcohol drinking in mice. JPET 18: 931-941.Google Scholar
  51. Phillips, T. J.,Belknap, J. K.,Buck, K. J., andCunningham, C. L. (1998). Genes on mouse chromosomes 2 and 9 determine variation in ethanol consumption. Mammal. Genome 9: 936-941.Google Scholar
  52. Prieto, A. L.,Weber, J. L.,Tracy, S.,Heeb, M. J., andLai, C. (1999). Gas6, a ligand for the receptor tyrosine kinase Tyro-3, is widely expressed in the central nervous system. Brain Res. 816: 646-661.Google Scholar
  53. Radcliffe, R. A.,Jones, B. C., andErwin, V. G. (1998). Mapping the provisional quantitative trait loci influencing temporal variation in locomotor activity in LS × SS recombinant inbred strains. Behav. Genet. 28: 39-47.Google Scholar
  54. Rasmussen, E., andHitzemann, R. (1999). Detection of QTLs for haloperidol-induced catalepsy in a BALB/c 3 LP F2 intercross. JPET 290: 1337-1346.Google Scholar
  55. Risinger, F. O., andCunningham, C. L. (1998). Ethanol-induced conditioned taste aversion in BXD recombinant inbred mice. Alcohol Clin. Exp. Res. 22: 1234-1244.Google Scholar
  56. Soller, M.,Brody, T., andGenizi, A. (1976). On the power of experimental designs for the direction of linkage between marker loci and quantitative loci in crosses between inbred lines. Theor. Appl. Genet. 47: 35-39.Google Scholar
  57. Talbot, C. J.,Nicod, A.,Cherny, S. S.,Fulker, D. W.,Collins, A. C., andFlint, J. (1999). High resolution mapping of quantitative trait loci in outbred mice. Nature Genet. 21: 305-308.Google Scholar
  58. Tarantino, L. M.,McClearn, G. E.,Rodriguez, L. A., andPlomin, R. (1998). Confirmation of quantitative trait loci for alcohol preference in mice. Alcohol Clin. Exp. Res. 22: 1099-1105.Google Scholar
  59. Taylor, B. A.,Wnek, C.,Kotlus, B. S.,Roemer, N.,MacTaggart, T., andPhillips, S. J. (1999). Genotyping new BXD recombinant inbred mouse strains and comparison of BXD and consensus maps. Mammal. Genome 10: 335-348.Google Scholar
  60. Zuberi, A. R.,Christianson, G. J.,Dave, S. B.,Bradley, J. A., andRoopenian, D. C. (1998). Expression screening of a yeast artificial chromosome contig refines the location of the mouse H3a minor histocompatibility antigen gene. J. Immunol. 161: 821-828.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Kristin Demarest
    • 1
  • Jay Koyner
    • 2
  • James McCaughranJr.
    • 2
  • Laura Cipp
    • 2
  • Robert Hitzemann
    • 2
    • 3
  1. 1.Department of Neurobiology and PsychiatryStony Brook
  2. 2.Department of PsychiatryStony Brook
  3. 3.Research and Psychiatry ServicesVeterans Administration Medical CenterNorthport

Personalised recommendations