Advertisement

Biologia Plantarum

, Volume 44, Issue 2, pp 269–275 | Cite as

Allelopathic Effects of Tree Species on Some Soil Microbial Populations and Herbaceous Plants

  • X.C. Souto
  • J.C. Bolaño
  • L. González
  • M.J. Reigosa
Article

Abstract

The allelopathic potential of four tree species on soil microbial populations and some herbaceous plants (two understory species and one general biotest species) was investigated. Effects of three nonindigenous tree species, Eucalyptus globulus Labill, Pinus radiata D.Don and Acacia melanoxylon R.Br., on microorganisms participating in the cycle of nitrogen were evaluated, comparing them with those produced by the autochthonous Quercus robur L. Influence of the trees on Lactuca sativa L., Dactylis glomerata L. and Trifolium repens L. was also checked in bioassays. Cell numbers of Nitrosomonas sp. were negatively affected by Acacia and Eucalyptus stands, mainly during spring, when flowers are especially abundant on the ground. Proteolytic microorganisms were also negatively affected by Eucalyptus and Pinus stands, whilst Quercus stand did not show any toxicity. Soil bioassays showed clear inhibitory effects on germination and growth of understory plants, particularly soils from Eucalyptus and Acacia stands. The greatest effects had the soil from Acacia stand, which was phytotoxic during the whole period of germination and growth of understory plants. Allelopathic phenomena could be, at least partially, responsible of the low species diversity in the understory of the nonindigenous tree stands.

Acacia melanoxylon Dactylis glomerata Eucalyptus globulus Lactuca sativa nitrogen cycle Pinus radiata Quercus robur Trifolium repens 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, M.: Most-probable number method for microbial populations.-In: Page, A.L. (ed.): Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, 2nd Edition. Pp. 815–820. American Society of Agronomy, Madison 1982.Google Scholar
  2. Alexander, M., Clark, F.E.: Nitrifying bacteria.-In: Black, C.A., Evans, D.D., White, J.L., Ensminger, L.E., Clark, F.E. (ed.): Methods of Soil Analysis. Part 2. Pp. 1477–1483. American Society of Agronomy, Madison 1965.Google Scholar
  3. Appel, H.M.: Phenolics in ecological interactions: the importance of oxidation.-J. chem. Ecol. 19: 1521–1552, 1993.Google Scholar
  4. Bever, J.D., Westover, K.M., Antonovics, J.: Incorporating the soil community into plant population dynamics: the utility of the feedback approach.-J. Ecol. 85: 561–573, 1997.Google Scholar
  5. Bever, J.D., Westover, K.M., Antonovics, J.: Reply correspondence.-Trends Ecol. Evol. 13: 407–408, 1998.Google Scholar
  6. Blum, U.: The value of model plant-microbe-soil systems for understanding processes associated with allelopathic interaction. One example.-In: Inderjit, K.M.M., Dakshini, Einhellig, F.A. (ed.): Allelopathy. Organisms, Processes and Applications. (Symposium Series 582.) Pp. 127–131. American Chemical Society, Washington 1995.Google Scholar
  7. Bunt, J.A., Mulder, D.: The possible role of bacteria in relation to the apple replant disease.-Meded. Fac. Landbouwwet. Rijksuniv. Gent 38: 1381–1385, 1973.Google Scholar
  8. Casal, J.F., Reigosa, M.J., Carballeira, A.: Potentiel allelopathique de Acacia dealbata Link.-Rev. Ecol. Biol. Sol 22: 1–12, 1985.Google Scholar
  9. Čatská, V.: Interrelationships between vesicular-arbuscular mycorrhiza and rhizosphere microflora in apple replant disease.-Biol. Plant. 36: 99–104, 1994.Google Scholar
  10. Čatská, V., Vančura, V., Hudská, G., Přikryl, Z.: Rhizosphere micro-organisms in relation to the apple replant problem.-Plant Soil 69: 187–197, 1982.Google Scholar
  11. Clark, F.E.: Agar-plate method for total microbial count.-In: Black, C.A., Evans, D.D., White, J.L., Ensminger, L.E., Clark, F.E. (ed.): Methods of Soil Analysis. Part 2. Pp. 1460–1466. American Society of Agronomy, Madison 1965.Google Scholar
  12. Cheng, H.H.: A conceptual framework for assessing allelochemicals in the soil environment.-In: Rizvi, S.J.H., Rizvi, V. (ed.): Allelopathy: Basic and Applied Aspects. Pp. 21–29. Chapman & Hall, London 1992.Google Scholar
  13. Chou, C.H.: Allelopathic research of subtropical vegetation in Taiwan. IV. Comparative phytotoxic nature of leachate from four subtropical grasses.-J. chem. Ecol. 17: 2149–2159, 1989.Google Scholar
  14. Chou, C.H., Leu, L.L.: Allelopathic substances and interactions of Delonix regia (Boj) Raf.-J. chem. Ecol. 18: 2285–2303, 1992.Google Scholar
  15. Focht, D.D., Joseph, H.: An improved method for the enumeration of denitrifying bacteria.-Soil Sci. Soc. Amer. Proc. 37: 698–699, 1973.Google Scholar
  16. González, L., Souto, X.C., Reigosa, M.J.: Allelopathic effects of Acacia melanoxylon R.Br. phyllodes during their decomposition.-Forest Ecol. Manage. 77: 53–63, 1995.Google Scholar
  17. Guitian, F., Carballas, I.: Técnicas de Análisis de Suelos. [Techniques in Soil Analysis]. 2a Ed.-Pico Sacro, Santiago de Compostela 1976. [In Span.]Google Scholar
  18. Inderjit, Dakshini, K.M.M.: On laboratory bioassays in allelopathy.-Bot. Rev. 61: 28–44, 1995.Google Scholar
  19. Jobidon, R.: Allelopathy in Quebec forestry — case studies in natural and managed ecosystems.-In: Rizvi, S.J.H., Rizvi, V. (ed.): Allelopathy: Basic and Applied Aspects. Pp. 341–356. Chapman & Hall, London 1992.Google Scholar
  20. Kaminsky, R.: The determination and extraction of available soil organic compounds.-Soil Sci. 130: 118–123, 1980.Google Scholar
  21. Kuiters, A.T.: Role of phenolic substances from decomposing forest litter in plant-soil interactions.-Acta bot. neerl. 39: 329–348, 1990.Google Scholar
  22. Kuiters, A.T., Denneman, C.A.J.: Water-soluble phenolic substances in soils under several coniferous and deciduous tree species.-Soil Biol. Biochem. 19: 765–769, 1987.Google Scholar
  23. Melkania, N.P.: Allelopathy in forest and agroecosystems in the Himalayan region.-In: Rizvi, S.J.H., Rizvi, V. (ed.): Allelopathy: Basic and Applied Aspects. Pp. 371–388. Chapman & Hall, London 1992.Google Scholar
  24. Molina, A., Reigosa, M.J., Carballeira, A.: Release of allelochemical agents from litter, throughfall, and topsoil in plantations of Eucalyptus globulus Labill in Spain.-J. chem. Ecol. 17: 147–160, 1991.Google Scholar
  25. Pellissier, F.: Allelopathic effect of phenolic acids from humic solutions on two spruce mycorrhizal fungi: Cenococcum graniforme and Lacearia laccata.-J. chem. Ecol. 19: 2105–2114, 1993.Google Scholar
  26. Pellissier, F.: The role of soil community in plant population dynamics: is allelopathy a key component?-Trends Ecol. Evolut. 13: 407, 1998.Google Scholar
  27. Pellissier, F., Souto, X.C.: Allelopathy in northern temperate and boreal semi-natural woodland.-Crit. Rev. Plant Sci. 18: 637–652, 1999.Google Scholar
  28. Pochon, J., Tardieux, P.: Techniques d'Analyse en Microbiologie du Sol.-La Tourelle, St. Mandé 1962.Google Scholar
  29. Rabotnov, T.A.: [On the allelopathy in the phytocenoses.]-Izv. Akad Nauk SSSR Ser. Biol. 1974(6): 811–820, 1974. [In Russ.]Google Scholar
  30. Reigosa, M.J., Sánchez-Moreiras, A.M., González, L.: Ecophysiological approach to allelopathy.-Crit. Rev. Plant Sci. 18: 577–608, 1999.Google Scholar
  31. Reigosa, M.J., Souto, X.C., González, L.: Allelopathic research: methodological, ecological and evolutionary aspects.-In: Narwal, S.S., Tauro, P. (ed.): Allelopathy: Field Observations and Methodology. Pp. 213–231. Scientific Publishers, Jodhpur 1996.Google Scholar
  32. Rice, E.L.: Allelopathy. 2nd Ed.-Academic Press, Orlando 1984.Google Scholar
  33. Souto, X.C., Gonzálex, L., Reigosa, M.J.: Comparative analysis of allelopathic effects produced by four forestry species during decomposition process in their soils in Galicia (NW Spain).-J. chem. Ecol. 20: 3005–3015, 1994.Google Scholar
  34. Vaughan, D., Sparling, G.P., Ord, B.G.: Amelioration of the phytotoxicity of phenolic acid by some soil microbes.-Soil Biol. Biochem. 15: 613–614, 1983.Google Scholar
  35. Wardle, D.A., Nilsson, M., Gallet, C., Zackrisson, O.: An eeosystem-level perspective of allelopathy.-Biol. Rev. 73: 305–319, 1998.Google Scholar
  36. Westover, K.M., Kennedy, A.C., Kelley, S.E.: Patterns of rhizosphere microbial community structure associated with co-occurring plant species.-J. Ecol. 85: 863–873, 1997.Google Scholar
  37. Yamamoto, Y.: Allelopathic potential of Anthoxanthum odoratum for invading Zoysia-grassland in Japan.-J. chem. Ecol. 21: 1365–1373, 1995.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • X.C. Souto
    • 1
  • J.C. Bolaño
    • 2
  • L. González
    • 2
  • M.J. Reigosa
    • 2
  1. 1.Departamento de Ingeniería de los Recursos Naturales y Medio Ambiente, E.U.E.T. ForestalUniversidade de VigoPontevedraSpain
  2. 2.Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Ciencias de VigoUniversidade de VigoVigoSpain

Personalised recommendations