Antonie van Leeuwenhoek

, Volume 79, Issue 1, pp 97–105 | Cite as

Analysis of yeasts derived from natural fermentation in a Tokaj winery

  • M. SipiczkiEmail author
  • P. Romano
  • G. Lipani
  • I. Miklos
  • Z. Antunovics


The diversity of yeast flora was investigated in a spontaneously fermenting sweet white wine in a Tokaj winery. The non-Saccharomyces yeasts dominating the first phase of fermentation were soon replaced by a heterogeneous Saccharomycespopulation, which then became dominated by Saccharomyces bayanus. Three Saccharomyces sensu stricto strains isolated from various phases of fermentation were tested for genetic stability, optimum growth temperature, tolerance to sulphur dioxide, copper and ethanol as well as for the ability to produce hydrogen sulphide and various secondary metabolites known to affect the organoleptic properties of wines. The analysis of the single-spore cultures derived from spores of dissected asci revealed high stability of electrophoretic karyotypes and various degrees of heterozygosity for mating-types, the fermentation of galactose and the production of metabolic by-products. The production levels of the by-products did not segregate in a 2:2 fashion, suggesting that the synthesis of these compounds is under polygenic control.

by-products fermentation karyotyping Saccharomyces segregation wine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnett JA, Payne RW & Yarrow D (1990) Yeasts: Characteristics and Identification, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  2. Boulton B, Singleton VL, Bisson LF & Kunkee RE (1966) Yeast and biochemistry of ethanol fermentation. In: Boulton B, Singleton VL, Bisson LF, Kunkee RE (Eds) Principles and Practices of Winemaking (pp 139-172). Chapman and Hall, New YorkGoogle Scholar
  3. Brady D, Glaum D & Duncan J-R (1994) Copper tolerance in Saccharomyces cerevisiae. Lett. Appl. Microbiol. 18: 245-250Google Scholar
  4. Brandolini V, Menziani E, Mazzotta D, Vecchiati G & Ponti I (1995) Impatto ambientale dell'impiego del rame in viticoltura. Vitivinicoltura 39: 53-56Google Scholar
  5. D'Amore T & Stewart GG (1987) Ethanol tolerance of yeast. Enzyme Microb. Technol. 9: 322-330Google Scholar
  6. Degre R (1993) Selection and commercial cultivation of wine yeasts and bacteria. In: Fleet GH (Ed) Wine Microbiology and Biotechnology (pp 421-447). Harwood Academic Publishers, ChuGoogle Scholar
  7. Dittrich HH (1987) Mikrobiologie des Weines. Ullmer, Stuttgart Doneche BJ (1993) Botrytized wines. In: Fleet GH (Ed) Wine Microbiology and Biotechnology (pp 327-351). Harwood Academic Publishers, ChurGoogle Scholar
  8. Fugelsang KC (1997) Wine Microbiology. Chapman and Hall, New YorkGoogle Scholar
  9. Giudici P, Zambonelli C, Passarelli P & Castellari L (1995) Improvement of wine composition with cryotolerant Saccharomyces strains. Am. J. Enol. Vitic. 46: 143-147Google Scholar
  10. Giudici P, Caggia C, Pulvirenti A & Rainieri S (1998) Karyotyping of Saccharomyces strains with different temperature profiles. J. Appl. Microbiol. 84: 811-819Google Scholar
  11. Giudici P, Romano P, Zambonelli C (1990) A biometric study of higher alcohol production in Saccharomyces cerevisiae. Can. J. Microbiol. 36: 61-64Google Scholar
  12. Heard G (1999) Novel yeasts in winemaking-looking to the future. Food Australia 51: 347-352Google Scholar
  13. Henick-Kling T, Edinger W, Daniel P & Monk P (1998) Selective effects of sulfur dioxide and yeast starter culture addition on indigenous yeast populations and sensory characteristics of wine. J. Appl. Microbiol. 84: 865-876Google Scholar
  14. Kishimoto M & Goto S (1995) Growth temperatures and electrophoretic karyotyping as tools for practical discrimination of Saccharomyces bayanus and Saccharomyces cerevisiae. J. Gen. Appl. Microbiol. 41: 239-247Google Scholar
  15. Kreger-van Rij NJW (1984) The Yeasts. a Taxonomic Study, 3rd edn. Elsevier Science Publishers, AmsterdamGoogle Scholar
  16. Kunkee RE, Amerine MA (1970) Yeast in wine-making. In The Yeast. vol 3 Yeast Technology, Rose AH, Harrison JS (eds). Academic Press: New York 5-57, 1970Google Scholar
  17. Lema C, Garcia-Jares C, Orriols I & Angulo L (1996) Contribution of Saccharomyces and non-Saccharomyces populations to the production of some components of Albarino wine aroma. Am. J. Enol. Vutic. 47: 206-216Google Scholar
  18. Longo E. & Vezinhet F (1993) Chromosomal rearrangements during vegetative growth of a wild strain of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 59: 322-326Google Scholar
  19. Martini A (1993) Origin and domestication of the wine yeast Saccharomyces cerevisiae. J. Wine Res. 4: 165-176Google Scholar
  20. Miklos I & Sipiczki M (1991) Breeding of a destiller's yeast by hybridization with a wine yeast. Appl. Microbiol. Biotechnol. 35: 638-642Google Scholar
  21. Miklos I, Varga T, Nagy A & Sipiczki M (1997) Genome instability and chromosomal rearrangement in a heterothallic wine yeast. J. Basic. Microbiol. 5: 345-354Google Scholar
  22. Mortimer R & Polsinelli M (1999) On the origins of wine yeast. Res. Microbiol. 150: 199: 204Google Scholar
  23. Mortimer RK, Romano P, Suzzi G & Polsinelli M (1994) Genome renewal: a new phenomenon revealed from a genetic study of 43 strains of Saccharomyces cerevisiae derived from natural fermentation of grape musts. Yeast 10: 1543-155Google Scholar
  24. Nadal D, Colomer B & Pina B (1996) Molecular polymorphism distribution in phenotypically distinct populations of wine yeast strains. Appl. Environm. Microbiol. 62: 1944-1950Google Scholar
  25. Naumov GI (1996) Genetic identification of biological species in the Saccharomyces sensu stricto complex. J. Ind. Microbiol. 17: 295-302Google Scholar
  26. Nykaenen L (1986) Formation an occurrence of flavour compounds in wine and distilled alcoholic beverages. Am. J. Enol. Vitic. 37: 84-96Google Scholar
  27. Paraggio M, Capece A, Lipani G & Romano P (1998) Fermentation characteristics of Saccharomyces cerevisiae isolates from Aglianico of Vulture in the Basilicata region of Southern Italy. Alcologia 10: 113-117Google Scholar
  28. Paraggio M, Marchese R, Laurita C & Romano P (1997) Resistenze al rame in lieviti da vino di diversa origine geografica. Proc. 3rd National Congr. on Biodiversitá: tecnologie-qualitá', Reggio Calabria (Italy), 16-17 June, (pp. 581-586)Google Scholar
  29. Querol A & Ramon D (1996) The application of molecular techniques in wine microbiology. Trends in Food Sci. Technol. 7: 73-78Google Scholar
  30. Rainieri S, Zambonelli C, Hallsworth JE, Pulvirenti A & Giudici P (1999) Saccharomyces uvarum, a distinct group within Saccharomyces sensu stricto. FEMS Microbiol. Lett. 177: 177-185Google Scholar
  31. Romano P (1998) Metabolic characteristics of wine strains during spontaneous and inoculated fermentation. Food Technol. Biotechnol. 35: 255-260Google Scholar
  32. Romano P, Paraggio M & Turbanti L (1998) Stability in by-product formation as a strain selection tool of Saccharomyces cerevisiae wine yeasts. J. Appl. Microbiol. 84: 336-341Google Scholar
  33. Romano P, Suzzi G (1993) Sulfur dioxide and wine microorganisms. In: Fleet GH (Ed) Wine Microbiology and Biotechnology (pp 373-393). Harwood Academic Publishers, ChurGoogle Scholar
  34. Soles RM, Ough CS, Kunkee RE (1982) Ester concentration differences in wine fermented by various species and strains of yeasts. Am. J. Enol. Vitic. 33: 94-98Google Scholar
  35. Sponholz W-R (1993) Wine spoilage by microorganisms. In: Fleet GH (Ed) Wine Microbiology and Biotechnology (pp 395-420). Harwood Academic Publishers, ChurGoogle Scholar
  36. Subden RE (1990) Wine yeast: Selection and modification. In: Panchal CJ (Ed) Yeast Strain Selection (pp. 113-137). Marcel Dekker, Inc, New York and BaselGoogle Scholar
  37. Tornai-Lehoczki J & Dlauchy D (1996) An opportunity to distinguish species of Saccharomyces sensu stricto by electrophoretic separation of the larger chromosomes. Letters Appl. Microbiol. 23: 227-230Google Scholar
  38. Tornai-Lehoczki J, Peter G, Dlauchy D & Deak T (1996) Some remarks on “a taxonomic key for the genus Saccharomyces” (Vaughan Martini and Martini 1993). Antonie van Leeuwenhoek 69: 229-233Google Scholar
  39. Tromp A, De Klerk CA (1988) Effect of copperoxychloride on the fermentation of must and on wine quality. S. Afr. J. Enol. Vitic. 9: 31-36Google Scholar
  40. Vaughan-Martini A & Martini A (1993) A taxonomic key for the genus Saccharomyces. System. Appl. Microbiol. 16: 113-119Google Scholar
  41. Wenzel K, Dittrich HH, Seyffardt HP, Bohnert J (1980) Schwefelrückstände auf Trauben und im Most und ihr Einfluß auf die H2S-Bildung. Wein-Wissenschaft 35: 414-420Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • M. Sipiczki
    • 1
    • 2
    • 3
    Email author
  • P. Romano
    • 3
  • G. Lipani
    • 3
  • I. Miklos
    • 1
  • Z. Antunovics
    • 1
  1. 1.Department of GeneticsUniversity of DebrecenDebrecenHungary
  2. 2.Research Group for Microbial DevelopmentHungarian Academy of SciencesDebrecenHungary
  3. 3.Dipartimento di Biologia, Difesa, Biotecnologie Agro-ForestaliUniversità della BasilicataPotenzaItaly

Personalised recommendations