General Relativity and Gravitation

, Volume 33, Issue 3, pp 429–453

Distributional Modes for Scalar Field Quantization

  • Alfonso F. Agnew
  • Tevian Dray

Abstract

We propose a mode-sum formalism for the quantization of the scalar field based on distributional modes, which are naturally associated with a slight modification of the standard plane-wave modes. We show that this formalism leads to the standard Rindler temperature result, and that these modes can be canonically defined on any Cauchy surface.

Klein–Gordon equation quantization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Manogue, C. A., Dray, T., and Copeland, E. (1988). The Trousers Problem Revisited, Pramãna—J. Phys. 30, 279–292.Google Scholar
  2. 2.
    Fulling, S. A. (1989). Aspects of Quantum Field Theory in Curved Space-Time, Cambridge University Press, Cambridge.Google Scholar
  3. 3.
    Fischer, J. (1998). A New Look at the Ashtekar-Magnon Energy Condition, Ph.D. Dissertation, Oregon State University.Google Scholar
  4. 4.
    Fischer, J., and Dray, T. (1999). A New Look at the Ashtekar-Magnon Energy Condition, Gen. Rel. Grav. 31, 511.CrossRefGoogle Scholar
  5. 5.
    Birrell, N. D., and Davies, P. C. W. (1982). Quantum Fields in Curved Space, Cambridge University Press, Cambridge.Google Scholar
  6. 6.
    Kay, B. S., Radzikowski, M. J., and Wald, R. M. (1997). Commun. Math. Phys. 183, 533.CrossRefGoogle Scholar
  7. 7.
    Kay, B. S. (1996). Quantum Fields in Curved Spacetime: Non Global Hyperbolicity and Locality, in: Proceedings of the Conference Operator Algebras and Quantum Field Theory, eds. S. Doplicher, R. Longo, J. Roberts, L. Zsido, International Press, MA.Google Scholar
  8. 8.
    Hawking, S. W. (1992). Phys. Rev. D 46, 603.CrossRefGoogle Scholar
  9. 9.
    Dray, T., and Manogue, C. A. (1988). Bogolubov Transformations and Completeness, Gen. Rel. Grav. 20, 957–965.Google Scholar
  10. 10.
    Roman, P. (1969). Introduction to Quantum Field Theory, Wiley, New York.Google Scholar
  11. 11.
    Dray, T., and Manogue, C. A. (1987). The Scalar Field in Curved Space, Institute of Mathematical Sciences report no. 112, Madras, 83 pages.Google Scholar
  12. 12.
    Unruh, W. (1976). Notes on Black Hole Evaporation, Phys. Rev. D 14, 870.Google Scholar
  13. 13.
    Wald, R. M. (1994). Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics, University of Chicago Press, Chicago.Google Scholar
  14. 14.
    Dimock, J. (1980). Commun. Math. Phys. 77, 219.Google Scholar
  15. 15.
    Choquet-Bruhat, Y. (1968). Hyperbolic Differential Equations on a Manifold, in: Battelle Recontres: 1967 Lectures in Mathematics and Physics, eds. C. M. DeWitt and J. A. Wheeler, Benjamin, NY.Google Scholar
  16. 16.
    Boersma, S. and Dray, T. (1995). Slicing, Threading and Parametric Manifolds, Gen. Rel. Grav. 27, 319–339.Google Scholar
  17. 17.
    Agnew, A. F. (1999). Distributional Modes for Curved Space Quantum Field Theory, Ph.D. Dissertation, Oregon State University.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Alfonso F. Agnew
    • 1
  • Tevian Dray
    • 2
  1. 1.Department of MathematicsSouthern Methodist UniversityDallasUSA
  2. 2.Department of MathematicsOregon State UniversityCorvallisUSA

Personalised recommendations