Acta Biotheoretica

, Volume 49, Issue 1, pp 43–51 | Cite as

Mirrored Genome Size Distributions in Monocot and Dicot Plants

  • Alexander E. Vinogradov
Article

Abstract

The variation in genome size and basic chromosome number was analyzed in the wide range of angiosperm plants. A divergence of monocots vs. dicots (eudicots) genome size distributions was revealed. A similar divergence was found for annual vs. perennial dicots. The divergence of monocots vs. dicots genome size distributions holds at different taxonomic levels and is more pronounced for species with larger genomes. Using nested analysis of variance, it was shown that putative constraints on genome size variation are not only stronger in dicots as compared to monocots but in the former they start to operate already at the family level, whereas in the latter they do so only at the order level. At the same time, variation in basic chromosome number is constrained at the order level in both groups. Higher basic chromosome numbers were found in perennial plants as compared to the annual ones, which can be explained by their need for a higher genetic recombination as compensation for the longer life-cycles. A negative correlation was found between genome size and basic chromosome number, which can be explained as a trade-off between different recombination mechanisms.

genome size basic chromosome number genome cytoecology angiosperms ecological complementarity Red Queen model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Ahn, S., and S. D. Tanksley (1993). Comparative linkage maps of the rice and maize genomes. Proceedings of the National Academy of Sciences of the USA 90: 7980-7984.Google Scholar
  2. Bell, G. (1982). The Masterpiece of Nature. University of California Press, Berkeley.Google Scholar
  3. Bennett, M. D. (1987). Variation in genomic form in plants and its ecological implications. New Phytologist 106(Suppl.): 177-200.Google Scholar
  4. Bennett, M. D. and I. J. Leicht (1995). Nuclear DNA amount in Angiosperms. Annals of Botany 76: 113-176.Google Scholar
  5. Bernardi, G., S. Hughes and D. Mouchiroud (1997). The major compositional transitions in the vertebrate genome. Journal of Molecular Evolution 44(Suppl. 1): S44-S51.Google Scholar
  6. Carels, N., P. Hatey, K. Jabbari and G. Bernardi (1998). Compositional properties of homologous coding sequences from plants. Journal of Molecular Evolution 46: 45-53.Google Scholar
  7. Chase, M. W. and V. A. Albert (1998). A perspective on the contribution of plastid rbcL DNA sequences to angiosperm phylogenetics. In: D. E. Soltis, P. S. Soltis and J. J. Doyle (eds.), Molecular Systematics of Plants II: DNA Sequencing, pp. 248-507. Kluwer Academic Publishers, Boston.Google Scholar
  8. Cronquist, A. (1988). The Evolution and Classification of Flowering Plants (Second Edition). New York Botanical Garden, Bronx, New York.Google Scholar
  9. Dahlgren, R. M. T. (1980). A revised system of classification of the Angiosperms. Botanical Journal of Linnean Society 80: 91-124.Google Scholar
  10. Donoghue, M. J. and J. A. Doyle (1989). Phylogenetic analysis of angiosperms and the relationships of Hamemelidae. In: P. R. Crane and S. Blackmore (eds.), Evolution, Systematics, and the Fossil History of the Hamamelidae, Vol. 1, pp. 17-45. Clarendon Press, Oxford.Google Scholar
  11. Felsenstein, J. (1985). Phylogenies and the comparative method. American Naturalist 125: 1-15.Google Scholar
  12. Funke, R. P., A. Kolchinsky and P. M. Gresshoff (1993). Physical mapping of a region in the soybean (Glycine max) genome containing duplicated sequences. Plant Molecular Biology 22: 437-446.Google Scholar
  13. Gill, K. S., B. S. Gill, T. R. Endo and E. V. Boyko (1996). Identification and high-density mapping of gene-rich regions in chromosome group 5 of wheat. Genetics 143: 1001-1012.Google Scholar
  14. Grime, J. P. and M. A. Mowforth (1982). Variation in genome size — an ecological interpretation. Nature 299: 151-153.Google Scholar
  15. Grime, J. P., J. M. L. Shacklock and S. R. Band (1985). Nuclear DNA contents, shoot phenology and species coexistence in a limestone grassland community. New Phytologist 100: 435-445.Google Scholar
  16. Gould, S. J. (1998). Gulliver's further travels: the necessity and difficulty of a hierarchical theory of selection. Philosophical Transactions of the Royal Society of London B 353: 307-314.Google Scholar
  17. Harvey, P. H. and M. D. Pagel (1991). The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford, UK.Google Scholar
  18. Jasienski, M. and F. A. Bazzaz (1995). Genome size and high CO2. Nature 376: 559-560.Google Scholar
  19. Macgillivray, C. W. and J. P. Grime (1995). Genome size predicts frost resistance in British herbaceous plants: implications for rates of vegetation response to global warming. Functional Ecology 9: 320-325.Google Scholar
  20. Makalowski, W. (1995). SINEs as a genomic scrap yard: an essay on genomic evolution. In: R. J Maraia. (ed.), The Impact of Short Interspersed Elements (SINEs) on the Host Genome, pp. 81-104. Austin, R. G. Landes Co.Google Scholar
  21. Meagher, T. R. and D. E. Costich (1996). Nuclear DNA content and floral evolution in Silene latifolia. Proceedings of the Royal Society of London B 263: 1455-1460.Google Scholar
  22. Minelli, S., P. Moscariello, M. Ceccarelli and P. G. Cionini (1996). Nucleotype and phenotype in Vicia faba. Heredity 76: 524-530.Google Scholar
  23. Moore, P. D. (1985). Nuclear DNA content as a guide to plant growth rate. Nature 318: 412-413.Google Scholar
  24. Salinas, J., G. Matassi, L. M. Montero and G. Bernardi (1988). Compositional compartmentalization and compositional patterns in the nuclear genomes of plants. Nucleic Acids Research 16: 4269-4285.Google Scholar
  25. Takhtajan, A. L. (1980). Outline of the classification of flowering plants (Magnoliophyta). Botanical Reviews 46: 225-359.Google Scholar
  26. Tanksley, S. D., M. W. Ganal, J. P. Prince, M. C. de Vicente, M. W. Bonierbale, P. Broun, T. M. Fulton, J. J. Giovannoni, S. Grandillo, G. B. Martin, R. Messeguer, J. C. Miller, L. Miller, A. H. Paterson, O. Pineda, M. S. Roder, R. A. Wing, W. Wu and N. D. Young (1992). High density molecular linkage maps of the tomato and potato genomes. Genetics 132: 1141-1160.Google Scholar
  27. Vallejos, C. E., N. S. Sakiyama and C. D. Chase (1992). A molecular marker-based linkage map of Phaseolus vulgaris L. Genetics 131: 733-740.Google Scholar
  28. Vinogradov, A. E. (1994). Measurement by flow cytometry of genomic AT/GC ratio and genome size. Cytometry 16: 34-40.Google Scholar
  29. Vinogradov, A. E. (1998a). Buffering: a possible passive-homeostasis role for redundant DNA. Journal of Theoretical Biology 193: 197-199.Google Scholar
  30. Vinogradov, A. E. (1998b). Genome size and GC-percent in vertebrates as determined by flow cytometry: the triangular relationship. Cytometry 31: 100-109.Google Scholar
  31. Vinogradov, A. E. (1999). Intron-genome size relationship on a large evolutionary scale. Journal of Molecular Evolution 49: 376-384.Google Scholar
  32. Wakamiya, I., H. J. Price, M. G. Messina and R. J. Newton (1996). Pine genome size diversity and water relations. Physiologia Plantarum 96: 13-20.Google Scholar
  33. Watson, L., and M. J. Dallwitz (1992 onwards). The families of flowering plants: descriptions, illustrations, identification, and information retrieval. Version: 8th May 1998. URL http://biodiversity.uno.edu/delta/.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Alexander E. Vinogradov
    • 1
  1. 1.Institute of CytologyRussian Academy of SciencesSt.PetersburgRussia

Personalised recommendations