Behavior Genetics

, Volume 30, Issue 6, pp 431–437

Epistatic Quantitative Trait Loci for Alcohol Preference in Mice

  • José R. Fernández
  • Lisa M. Tarantino
  • Scott M. Hofer
  • George P. Vogler
  • Gerald E. McClearn
Article

Abstract

Alcohol consumption is a complex trait, responding to the influence of various genes and environmental influences acting in a quantitative fashion. Various studies in alcohol consumption processes have identified quantitative trait locus (QTL) regions across the mouse genome that appear to contribute to this phenotype. The purpose of this study was to examine the influence of interactions between alleles at different loci, a phenomenon known as epistasis, on previously identified QTLs for alcohol consumption in mice. A multiple regression model was developed and applied to test for the significance of the interaction between two QTLs and to quantify this interaction. Our results indicate the presence of epistasis between loci on mouse chromosomes 2 and 3 accounting for 7-8% of the variation in alcohol preference, respectively.

Epistasis QTL alcohol consumption gene interaction mice 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Beavis, W. D. (1998). QTL analysis: Power, precision, and accuracy. In Paterson, A. H. (ed.), Molecular Dissection of Complex Traits,CRC Press, Boca Raton, FL, pp. 145–173.Google Scholar
  2. Belknap, J. K., Richars, S. P., O'Toole, L. A., Helms, M. L., and Phillips, T. J. (1997). Short-term selective breeding as a tool for QTL mapping: Ethanol preference drinking in mice. Behav. Genet.27: 57–66.Google Scholar
  3. Chase, K., Adler, F. R., and Lark, K. G. (1997). Epistat: A computer program for identifying and testing interactions between pairs of quantitative trait loci. Theor.Appl.Genet.94: 724–730.Google Scholar
  4. Crabbe, J. C., Phillips, T. J., Feller, D. J., Hen, R., Wenger, C. D., Lessov, C. N., and Schafer, G. L. (1996). Elevated alcohol consumption in null mutant mice lacking 5-HT1B serotonin receptors. Nature Genet.14: 98–101.Google Scholar
  5. Crabbe, J. C., Phillips, T. J., Buck, K. J., Cunningham, C. L., and Belknap, J. K. (1999). Identifying genes for alcohol and drug sensitivity: Recent progress and future directions. Trends Neurosci.22: 173–179.Google Scholar
  6. Demarest, K., McCaughran, J., Jr., Mahjubi, E., Cipp, L., and Hitzemann, R. (1999). Identification of an acute ethanol response quantitative trait locus on mouse chromosome 2. J.Neurosci.19: 549–561.Google Scholar
  7. Doebley, J., Stec, A., and Gustus, C. (1995). Teosinte branchedl and the origin of maize: Evidence for epistasis and the evolution of dominance. Genetics 141: 333–346.Google Scholar
  8. Eshed, Y., and Zamir, D. (1996). Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics 143: 1807–1817.Google Scholar
  9. Fadda, F., and Rossetti, Z. L. (1998). Chronic ethanol consumption: From neuroadaptation to neurodegeneration. Prog.Neurobiol.56: 385–431.Google Scholar
  10. Fernández, J. R., Vogler, G. V., Tarantino, L. M., Vignetti, S., Plomin, R., and McClearn, G. E. (1999). Sex-exclusive QTL for alcohol acceptance in mice. Am.J.Med.Genet.88: 647–652.Google Scholar
  11. Fijneman, R. J., de Vries, S. S., Jansen, R. C., and Demant, P. (1996). Complex interactions of new quantitative trait loci, Sluc1, Sluc2, Sluc3, and Sluc4, that influence the susceptibility to lung cancer in the mouse. Nature Genet.14: 465–467.Google Scholar
  12. Frankel, W. N., Valenzuela, A., Lutz, C. M., Johnson, E. W., Dietrich, W. F., and Coffin, J. M. (1995). New seizure frequency QTL and the complex genetics of epilepsy in EL mice. Mammal. Genome 6: 830–838.Google Scholar
  13. Galli, J., Fakhrai-Rad, H., Kamel, A., Marcus, C., Norgren, S., and Luthman, H. (1999). Pathophysiological and genetic characterization of the major diabetes locus in GK rats. Diabetes 48: 2463–2470.Google Scholar
  14. Gurganus, M. C., Nuzhdin, S. V., Leips, J. W., and Mackay, T. F. (1999). High-resolution mapping of quantitative trait loci for sternopleural bristle number in Drosophila melanogaster. Genetics 152: 1585–1604.Google Scholar
  15. Habuchi, Y., Frukawa, T., Tanaka, H., Lu, L. L., Morikawa, J., and Yoshimura, M. (1995). Ethanol-inhibition of Ca2+ and Na+ currents in the guinea-pig heart. Eur.J.Pharmacol.292: 143–149.Google Scholar
  16. Homanics, G. E., Qinlan, J. J., Mihalek, R. M., and Firestone, L. L. (1998). Alcohol and anesthetic mechanisms in genetically engineered mice. Front.Biosci.3: 548–558.Google Scholar
  17. Hood, H. M., Belknap, J. K., Crabbe, J. C., and Buck, K. J. (in press). Genome-wide search for epistasis in a complex trait: Pentobarbital withdrawal convulsions in mice. Behav Genet.Google Scholar
  18. Jansen, R. C. (1993). Interval mapping of multiple quantitative trait loci. Genetics 132: 205–211.Google Scholar
  19. Kao, C. T., Zeng, Z. B., and Teasdale, R. D. (1999). Multiple interval mapping for quantitative trait loci. Genetics 152: 1203–1216.Google Scholar
  20. Li, T. K. (2000). Pharmacogenetics of responses to alcohol and genes that influence alcohol drinking. J.Stud.Alcohol 61: 5–12.Google Scholar
  21. Li, Z. K., Pinson, S. R. M., Park, W. D., Paterson, A. H., and Stansel, J. W. (1997). Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics 145: 453–465.Google Scholar
  22. Long, A. D., Mullaney, S. L., Mackay, T. F., and Langley, C. H. (1996). Genetic interactions between naturally occurring alleles at quantitative trait loci and mutant alleles at candidate loci affecting bristle number in Drosophila melanogaster. Genetics 144: 1497–1510.Google Scholar
  23. McClearn, G. E., Plomin, R., Gora-Maslak, G., and Crabbe, J. C. (1991). The gene chase in behavioral science. Psychol.Sci.2: 222–229.Google Scholar
  24. Melo, J. A., Shendure, J., Pociask, K., and Silver, L. M. (1996). Identification of sex-specific quantittive trait loci controlling alcohol preference in C57BL/6 mice. Nature Genet.13: 147–153.Google Scholar
  25. Mendenhall, C. L., Rouster, S. D., Roselle, G. A., Grossman, C. J., Ghosn, S., and Gartside, P. (1993). Impact of chronic alcoholism on the aging rat: Changes in nutrition, liver composition, and mortality. Alcohol.Clin.Exp.Res.17: 847–853.Google Scholar
  26. Mitchell, B. D., Ghosh, S., Schneider, J. L., Birznieks, G., and Blangero, J. (1997). Power of variance component linkage analysis to detect epistasis. Genet.Epidemiol.14: 1017–1022.Google Scholar
  27. Peirce, J. L., Derr, R., Shendure, J., Kolata, T., and Silver, L. M. (1998). A major influence of sex-specific loci on alcohol preference in C57B1/6 and DBA/2 inbred mice. Mammal.Genome 9: 942–948.Google Scholar
  28. Phillips, P. C. (1998). The language of gene interaction. Genetics 149: 1167–1171.Google Scholar
  29. Phillips, T. J., Belknap, J. K., Buck, K. J., and Cunningham, C. L. (1998). Genes on mouse chromosomes 2 and 9 determine variation in ethanol consumption. Mammal.Genome 9: 936–941.Google Scholar
  30. Rapp, J. P., Garrett, M. R., and Deng, A. Y. (1998). Construction of a double congenic strain to prove an epistatic interaction on blood pressure between rat chromosomes 2 and 10. J.Clin.Invest.101: 1591–1595.Google Scholar
  31. Rossow, I. (1996). Alcohol-related violence: The impact of drinking pattern and drinking context. Addiction 91: 1651–1661.Google Scholar
  32. Sawilowsky, S. S., Blair, R., and Clifford, R. (1992). A more realistic look at the robustness and Type II error properties of the t test to departures from population normality. Psychol.Bull.111: 352–360.Google Scholar
  33. Shook, D. R., and Johnson, T. E. (1999). Quantitative trait loci affecting survival and fertility-related traits in Caenorhabditis elegans show genotype-environment interactions, pleiotropy and epistasis. Genetics 153: 1233–1243.Google Scholar
  34. Tarantino, L. M., McClearn, G. E., Rodriguez, L. A., and Plomin, R. (1998). Confirmation of QTLs for alcohol preference in mice. Alcohol.Clin.Exp.Res.22: 1090–1105.Google Scholar
  35. Zeng, Z. B. (1993). Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc.Natl.Acad. Sci.USA 90: 10972–10976.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • José R. Fernández
    • 1
    • 2
  • Lisa M. Tarantino
    • 3
  • Scott M. Hofer
    • 2
    • 5
  • George P. Vogler
    • 2
  • Gerald E. McClearn
    • 2
  1. 1.Obesity Research CenterSt. Luke's-Roosevelt Hospital CenterNew York
  2. 2.Center for Developmental and Health GeneticsThe Pennsylvania State UniversityUniversity Park
  3. 3.Center for Developmental and Health GeneticsThe Pennsylvania State UniversityUniversity Park
  4. 4.Genomics Institute of theNovartis Research FoundationSan Diego
  5. 5.Department of Human Development and Family StudiesThe Pennsylvania State UniversityUniversity Park

Personalised recommendations