Antonie van Leeuwenhoek

, Volume 79, Issue 1, pp 89–96 | Cite as

Microbiology and physiology of Cachaça (Aguardente) fermentations

  • Rosane Freitas Schwan
  • Alexandre T. Mendonça
  • João José da SilvaJr.
  • Valéria Rodrigues
  • Alan E. Wheals

Abstract

Cachaça (aguardente) is a rum-style spirit made from sugar cane juice by artisanal methods in Brazil. A study was made of the production, biochemistry and microbiology of the process in fifteen distilleries in Sul de Minas. Identification of 443 yeasts showed Saccharomyces cerevisiae to be the predominant yeast but Rhodotorula glutinis and Candida maltosa were predominant in three cases. Bacterial infection is a potential problem, particularly in older wooden vats, when the ratio of yeasts:bacteria can be 10:1 or less. A study of daily batch fermentations in one distillery over one season in which 739 yeasts were identified revealed that S. cerevisiae was the predominant yeast. Six other yeast species showed a daily succession: Kluyveromyces marxianus, Pichia heimii and Hanseniaspora uvarum were present only at the beginning, Pichia subpelliculosa and Debaryomyces hansenii were detected from mid to the end of fermentation, and Pichia methanolica appeared briefly after the cessation of fermentation. Despite a steady influx of yeasts from nature, the species population in the fermenter was stable for at least four months suggesting strong physiological and ecological pressure for its maintenance. Cell densities during the fermentation were: yeasts – 4 × 108/ml; lactic acid bacteria – 4 × 105/ml; and bacilli – 5 × 104/ml. Some acetic acid bacteria and enterobacteriaceae appeared at the end. Sucrose was immediately hydrolysed to fructose and glucose. The main fermentation was complete after 12 hours but not all fructose was utilised when harvesting after 24 hours.

aguardente cachaça fermentation rum succession yeasts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barillère JM, Bidan P & Dubois C (1983) Thermal resistance of yeasts and lactic acid bacteria isolated from wine (French). Bull. de l'OIV 56: 327-351Google Scholar
  2. Barnes AC (1974) The sugar cane. Leonard Hill, Aylesbury, UKGoogle Scholar
  3. Bisson LF (1999) Stuck and sluggish fermentations. Am. J. Enol. Vitic. 50: 107-119Google Scholar
  4. Cleto FVG & Mutton MJR (1997) Rendimento e qualidade da aguardente de cana produzida utilizando fermento tratado com ácido sulfÚrico e fubá de milho. Sociedade Técnicos Açucareiros Alcooleiros Brasil. 16: 38-40Google Scholar
  5. Duarte MCT, Serzedello A, Serra GE, Oliveira MCFL, Ponezi AN & Sartoratto A (1996) Effect of lecithin and soy oil on the fermentative performance of Saccharomyces uvarum IZ1904. Rev. Microbiol. 27: 255-262Google Scholar
  6. Ebeling C (1989) New technological advances in Brazilian ethanol production. Zuckerindustrie 114: 17-24Google Scholar
  7. Fahrasmane L, Parfait A, Jouret C & Galzy P (1985) Production of higher alcohols and short chain fatty acids by different yeasts used in rum fermentation. J. Food Science 50: 1427-1430, 1436Google Scholar
  8. Fahrasmane L & Ganou-Parfait B (1998) Microbial flora of rum fermentation media. J. Appl. Microbiol. 84: 921-928Google Scholar
  9. Fleet GH (1993) Wine yeasts. In: Fleet GH (Ed) Wine Microbiology and Biotechnology (pp 151-223). Harwood Academic Publishers, Chur, SwitzerlandGoogle Scholar
  10. Fleet GH, Lafon-Fourcade S & Ribéreau-Gayon P (1984) Evolution of yeasts and lactic acid bacteria during fermentation and storage of Bordeaux wines. Appl. Environ. Microbiol. 48: 1034-1038Google Scholar
  11. Food and Drug Administration (1995) Bacteriological Analysis Manual (8th edn). AOAC International, Gaithersburg, Md, USAGoogle Scholar
  12. Hohmann S & Mager WH (1997) Yeast Stress Responses. Springer VerlagGoogle Scholar
  13. Iglesias R, Ferreras JM, Arias FJ, Munoz R, & Girbes T (1991) Effect of continued exposition to ethanol on activity of the ammonium and fructose transport-systems in Saccharomyces cerevisiae var. ellipsoideus. Biotechnol. Bioengin. 37: 389-391Google Scholar
  14. Ingledew WM (1993) Yeasts for production of fuel ethanol. In: Rose AH & Harrison SE (Eds) The Yeasts (2nd edn) Vol 5 (pp 245-291). Academic Press, LondonGoogle Scholar
  15. Jones RS & Ough CS (1985) Variations in the percent ethanol (v/v) per degree-Brix conversions of wines from different climatic regions. Am. J. Enol. Viticult. 36: 268-270Google Scholar
  16. Joyeux A, Lafon-Lafourcade S & Ribéreau-Gayon P (1984) Evolution of acetic acid bacteria during fermentation and storage of wine. Appl. Environ. Microbiol. 48: 153-156Google Scholar
  17. Kurtzman CP & Fell JW (Eds.) (1988) The Yeasts-A Taxonomic Study (4th edn). Elsevier Science, NetherlandsGoogle Scholar
  18. Lachance M-A (1995) Yeast communities in a natural tequila fermentation. Antonie van Leeuwenhoek 68: 151-160Google Scholar
  19. Lanaradis P & Lafon-Lafourcade S (1982/3) Alcohol yield based on sugars during the fermentation of grape must (French). Rapport de Activités et Recherches. Institut d'Oenologie, Univ. de BordeauxGoogle Scholar
  20. Leão C & Van Uden N (1982) Effects of ethanol and other alkanols on the glucose-transport system of Saccharomyces cerevisiae. Biotechnol. Bioeng. 24: 2601-2604Google Scholar
  21. Leão C & Van Uden N (1985) Effects of ethanol and other alkanols on the temperature relations of glucose-transport and fermentation in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 22: 359-363Google Scholar
  22. Lima UA (1983) Aguardentes. In: Aquarone E, Lima AA & Bozani W (Eds). Alimentos e bebidas produzidas por fermentação (pp 79-103). Editora Edgard Blücher Ltda., São Paulo, BrazilGoogle Scholar
  23. Lord PG & Wheals AE (1980) Asymmetrical division of Saccharomyces cerevisiae J. Bacteriol. l42: 808-8l8Google Scholar
  24. Maia ABRA, Germano A, Glerian CR, Auharek E, Alves JGLF, Assis NR & Pereira VLS (1993) Ação do fubá e da farinha de soja sobre a evolução da fermentação alcoólica em Saccharomyces cerevisiae. Sociedade Técnicos Açucareiros Alcooleiros Brasil. 11: 22-27Google Scholar
  25. Martin CP & Siebert KJ (1992) Evaluation of multinitrogen source media for wild yeast detection in brewing culture yeast. J. Am. Soc. Brew. Chem. 50: 134-138.Google Scholar
  26. Morais PB, Rosa CA, Linardi VR, Pataro C & Maia ABRA (1997) Characterization and succession of yeast populations associated with spontaneous fermentations during the production of Brazilian sugar-cane aguardente. World J. Microbiol. Biotechnol. 13: 241-243Google Scholar
  27. Ngang JJE, Wolniewicz E, Letourneau F & Villa P (1992) Stimulation of lactobacilli during alcoholic fermentation-action of sucrose hydrolysis by yeast. Biotechnol. Letts. 14: 741-746Google Scholar
  28. Parfait A & Sabin G (1975) Les fermentations traditionelles des mélasses et des jus de canne aux Antilles françaises. Ind Aliment. Agricol. 92: 27-34Google Scholar
  29. Pataro C, Santos A, Correa SR, Morais PB, Linardi VR & Rosa CA (1998) Physiological characterization of yeasts isolated from artisanal fermentations in an aguardente distillery. Rev. Microbiol. 29: 104-108Google Scholar
  30. Pataro C, Guerra JB, Petrillo-Peixoto ML, Mendonca-Hagler LC, Linardi VR & Rosa CA (2000) Yeast communities and genetic polymorphism of Saccharomyces cerevisiae strains associated with artisanal fermentation in Brazil. J. Appl. Microbiol. 89: 24-31Google Scholar
  31. Salmon JM(1989) Effect of sugar-transport inactivation in Saccharomyces cerevisiae on sluggish and stuck enological fermentations. Appl. Environ. Microbiol. 55: 953-958Google Scholar
  32. Schwan RF (1998) Cocoa fermentations conducted with a defined microbial cocktail inoculum. Appl. Environ. Microbiol. 64: 1477-1483Google Scholar
  33. Schwan RF, Cooper RM & Wheals AE (1997) Endopolygalacturonase secretion by Kluyveromyces marxianus and other cocoa pulp-degrading yeasts. Enz. Microb. Technol. 21: 234-244Google Scholar
  34. Sibirny AA (1996) Pichia methanolica (Pichia pinus MH4). In: Wolf K (Ed) Nonconventional yeasts in Biotechnology: A handbook (pp 277-291). Springer-Verlag, BerlinGoogle Scholar
  35. Swaffield CH & Scott JA (1995) Existence and development of natural microbial populations in wooden storage vats used for alcoholic cider maturation. J. Am. Soc. Brew. Chem. 53: 117-120Google Scholar
  36. Wheals AE, Basso LC, Alves DMG & Amorim, HV (1999) Fuel ethanol after 25 years. Trends Biotech. 17: 482-487Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Rosane Freitas Schwan
    • 1
  • Alexandre T. Mendonça
    • 1
  • João José da SilvaJr.
    • 1
  • Valéria Rodrigues
    • 1
  • Alan E. Wheals
    • 1
    • 2
  1. 1.Department of BiologyFederal University of LavrasLavras, MGBrazil
  2. 2.Department of Biology and BiochemistryUniversity of BathBath, BA2 7AYUnited Kingdom

Personalised recommendations