Behavior Genetics

, Volume 31, Issue 1, pp 17–27

The Genetic Architecture of Odor-Guided Behavior in Drosophila melanogaster

  • Robert R. H. Anholt
  • Trudy F. C. Mackay
Article

Abstract

The avoidance response to repellent odorants in Drosophila melanogaster, a response essential for survival, provides an advantageous model for studies on the genetic architecture of behavior. Transposon tagging in a highly inbred strain of flies in combination with a rapid and simple statistical behavioral assay enables the identification of not only large phenotypic effects, but also small aberrations from wild-type avoidance behavior. The recent completion of the sequence of the Drosophila genome facilitates the molecular characterization of transposon-tagged genes and correlation between gene expression and behavior in smell-impaired (smi) mutant lines. Quantitative genetic analyses of a collection of smi lines in a coisogenic background revealed an extensive network of epistatic interactions among genes that shape the olfactory avoidance response. The identification and functional characterization of proteins encoded by smi genes that form part of the olfactory subgenome and correlation of polymorphisms in these genes with variation in odor-guided behavior in natural populations will advance our understanding of the genetic architecture of chemosensory behavior.

Olfaction chemoreception quantitative genetics P-element insertional mutagenesis epistasis functional genomics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Aceves-Piña, E., andQuinn, W. (1979). Learning in normal and mutant Drosophila larvae. Science 206: 93-96.Google Scholar
  2. Adams, M. D. et al. (2000). The genome sequence of Drosophila melanogaster. Science 287: 2185-2195.Google Scholar
  3. Anholt, R. R. H.,Lyman, F. L., andMackay, T. F. C. (1996). Effects of single P-element insertions on olfactory behavior in Drosophila melanogaster. Genetics 143: 293-301.Google Scholar
  4. Ashburner, M., et al. (1999). An exploration of the sequence of a 2.9-Mb region of the genome of Drosophila melanogaster: The Adh region. Genetics 153: 179-219.Google Scholar
  5. Ayer, R. K., andCarlson, J. (1992). Olfactory physiology in the Drosophila antenna and maxillary palp: acj6 distinguishes two classes of odorant pathways. J. Neurobiol. 23: 965-982.Google Scholar
  6. Bellen, H. J.,O'Kane, C. J.,Wilson, C.,Grossniklaus, V.,Pearson, R. K., andGehring, W. J. (1989). P-element-mediated enhancer detection: A versatile method to study development in Drosophila. Genes Dev. 3: 1288-1300.Google Scholar
  7. Ben-Arie, N.,Lancet, D.,Taylor, C.,Khen, M.,Walker, N.,Ledbetter, D. H.,Carrozzo, R.,Patel, K.,Sheer, D.,Lehrach, H., andNorth, M. A. (1994). Olfactory receptor gene cluster on human chromosome 17: Possible duplication of an ancestral receptor repertoire. Hum. Mol. Genet. 3: 229-235.Google Scholar
  8. Bozza, T. C., andKauer, J. S. (1998). Odorant response properties of convergent olfactory receptor neurons. J. Neurosci. 18: 4560-4569.Google Scholar
  9. Buck, L., andAxel, R. (1991). A novel multigene family may encode odorant receptors: A molecular basis for odor recognition. Cell 65: 175-187.Google Scholar
  10. Chess, A.,Simon, I.,Cedar, H., andAxel, R. (1994). Allelic inactivation regulates olfactory receptor gene expression. Cell 78: 823-834.Google Scholar
  11. Clyne, P. J.,Warr, C. G.,Freeman, M. R.,Lessing, D.,Kim, J. H., andCarlson, J. R. (1999a). A novel family of a divergent seventransmembrane proteins: Candidate odorant receptors in Drosophila. Neuron 22: 327-338.Google Scholar
  12. Clyne, P. J.,Certel, S. J.,de Bruyne, M.,Zaslavsky, L.,Johnson, W. A., andCarlson, J. R. (1999b). The odor specificities of a subset of olfactory receptor neurons are governed by Acj6, a POU-domain transcription factor. Neuron 22: 339-347.Google Scholar
  13. Cooley, L.,Kelley, R., andSpradling, A. (1988). Insertional mutagenesis of the Drosophila genome with single P-elements. Science 239: 1121-1128.Google Scholar
  14. de Bruyne, M.,Clyne, P. J., andCarlson, J. R. (1999). Odor coding in a model olfactory organ: The Drosophila maxillary palp. J. Neurosci. 19: 4520-4532.Google Scholar
  15. DeZazzo, J., andTully, T. (1995). Dissection of memory formation: From behavioral pharmacology to molecular genetics. Trends Neurosci. 18: 212-218.Google Scholar
  16. Fedorowicz, G. M.,Fry, J. D.,Anholt, R. R. H., andMackay, T. F. C. (1998). Epistatic interactions between smell impaired loci in Drosophila melanogaster. Genetics 148: 1885-1891.Google Scholar
  17. Friedrich, R. W., andKorsching, S. I. (1997). Combinatorial and chemotopic odorant coding in the zebrafish olfactory bulb visualized by optical imaging. Neuron 18: 737-752.Google Scholar
  18. Gao, Q., andChess, A. (1999). Identification of candidate Drosophila olfactory receptors from genomic DNA sequence. Genomics 60: 31-39.Google Scholar
  19. Gao, Q.,Yuan, B., andChess, A. (2000). Convergent projections of Drosophila olfactory neurons to specific glomeruli in the antennal lobe. Nature Neurosci. 3: 780-785.Google Scholar
  20. Griffing, B. (1956). Concept of general and specific combining ability in relation to diallel crossing systems. Aust. J. Biol. Sci. 9: 463-493.Google Scholar
  21. Helfand, S. L., andCarlson, J. (1989). Isolation and characterization of an olfactory mutant in Drosophila with a chemically specific defect. Proc. Natl. Acad. Sci. USA 86: 2908-2912.Google Scholar
  22. Hildebrand, J. G., andShepherd, G. M. (1997). Mechanisms of olfactory discrimination: Converging evidence for common principles across phyla. Annu. Rev. Neurosci. 20: 595-631.Google Scholar
  23. Hughes, A. L., andHughes, M. K. (1993). Adaptive evolution in the rat olfactory receptor gene family. J. Mol. Evol. 36: 249-254.Google Scholar
  24. Issel-Tarver, L., andRine, J. (1997). The evolution of mammalian olfactory receptor genes. Genetics 145: 185-195.Google Scholar
  25. Joerges, J.,Küttner, A.,Galizia, C. G., andMenzel, R. (1997). Representations of odours and odour mixtures visualized in the honeybee brain. Nature 387: 285-288.Google Scholar
  26. Kim, M. S.,Repp, A., andSmith, D. P. (1998). LUSH odorantbinding protein mediates chemosensory responses to alcohols in Drosophila melanogaster. Genetics 150: 711-721.Google Scholar
  27. Krautwurst, D.,Yau, K. W., andReed, R. R. (1998). Identification of ligands for olfactory receptors by functional expression of a receptor library. Cell 95: 917-926.Google Scholar
  28. Lai, C.,Lyman, R. F.,Long, A. D.,Langley, C. H., andMackay, T. F. C. (1994). Naturally occurring variation in bristle number and DNA polymorphisms at the scabrous locus of Drosophila melanogaster. Science 266: 1697-1702.Google Scholar
  29. Laissue, P. P.,Reiter, C.,Hiesinger, P. R.,Halter, S.,Fischbach, K. F., andStocker, R. F. (1999). Three-dimensional reconstruction of the antennal lobe in Drosophila melanogaster. J. Comp. Neurol. 405: 543-552.Google Scholar
  30. Lander, E. S., andSchork, N. J. (1994). Genetic dissection of complex traits. Science 265: 2037-2048.Google Scholar
  31. Lilly, M., and Carlson, J. (1989). Smellblind: A gene required for Drosophila olfaction. Genetics 124: 293-302.Google Scholar
  32. Lilly, M.,Kreber, R.,Ganetzky, B., andCarlson, J. (1994). Evidence that the Drosophila olfactory mutant smellblind defines a novel class of sodium channel mutation. Genetics 136: 1087-1096.Google Scholar
  33. Long, A. D.,Lyman, R. F.,Langley, C. H., andMackay, T. F. C. (1998). Two sites in the Delta gene region contribute to naturally occurring variation in bristle number in Drosophila melanogaster. Genetics 149: 999-1017.Google Scholar
  34. Long, A. D.,Lyman, R. F.,Morgan, A. H.,Langley, C. H., andMackay, T. F. C. (2000). Both naturally occurring insertions of transposable elements and intermediate frequency polymorphisms at the achaete-scute complex are associated with variation in bristle number in Drosophila melanogaster. Genetics 154: 1255-1269.Google Scholar
  35. Lyman, R. F., andMackay, T. F. C. (1998). Candidate quantitative trait loci and naturally occurring variation for bristle number in Drosophila melanogaster: The Delta-Hairless gene region. Genetics 149: 983-998.Google Scholar
  36. Lyman, R. F.,Lai, C., andMackay, T. F. C. (1999). Linkage disequilibrium mapping of molecular polymorphisms at the scabrous locus associated with naturally occurring variation in bristle number in Drosophila melanogaster. Genet. Res. 74: 303-311.Google Scholar
  37. Mackay, T. F. C. (1996). The nature of quantitative genetic variation revisited: Lessons from Drosophila bristles. BioEssays 18: 113-121.Google Scholar
  38. Mackay, T. F. C., andLangley, C. H. (1990). Molecular and phenotypic variation in the achaete-scute region of Drosophila melanogaster. Nature 348: 64-66.Google Scholar
  39. Mackay, T. F. C.,Hackett, J. B.,Lyman, R. F.,Wayne, M. L., andAnholt, R. R. H. (1996). Quantitative genetic variation of odorguided behavior in a natural population of Drosophila melanogaster. Genetics 144: 727-735.Google Scholar
  40. Malnic, B.,Hirono, J.,Sato, T., andBuck, L. B. (1999). Combinatorial receptor codes for odors. Cell 96: 713-723.Google Scholar
  41. McKenna, M.,Monte, P.,Helfand, S. L.,Woodward, C., andCarlson, J. (1989). A simple chemosensory response in Drosophila and the isolation of acj mutants in which it is affected. Proc. Natl. Acad. Sci. USA 86: 8118-8122.Google Scholar
  42. McKenna, M. P.,Hekmat-Scafe, D. S.,Gaines, P., andCarlson, J. (1994). Putative Drosophila pheromone-binding proteins expressed in a subregion of the olfactory system. J. Biol. Chem. 269: 16340-16347.Google Scholar
  43. Mombaerts, P.,Wang, F.,Dulac, C.,Chao, S. K.,Nemes, A.,Mendelsohn, M.,Edmondson, J., andAxel, R. (1996). Visualizing an olfactory sensory map. Cell 87: 675-686.Google Scholar
  44. Monte, P.,Woodard, C.,Ayer, R.,Lilly, M.,Sun, H., andCarlson, J. (1989). Characterization of the larval olfactory response in Drosophila and its genetic basis. Behav. Genet. 19: 267-283.Google Scholar
  45. Neimann-Sorensen, A., andRobertson, A. (1961). The association between blood groups and several production characteristics in three Danish cattle breeds. Acta Agr. Scand. 11: 163-196.Google Scholar
  46. Osborne, K. A.,Robichon, A.,Burgess, E.,Butland, S.,Shaw, R. A.,Coulthard, A.,Pereira, H. S.,Greenspan, R. J., andSokolowski, M. B. (1997). Natural behavior polymorphism due to a cGMPdependent protein kinase of Drosophila. Science 277: 834-836.Google Scholar
  47. Pikielny, C. W.,Hasan, G.,Rouyer, F., andRosbash, M. (1994). Members of a family of Drosophila putative odorant-binding proteins are expressed in different subsets of olfactory hairs. Neuron 12: 35-49.Google Scholar
  48. Qasba, P., andReed, R. R. (1998). Tissue and zonal-specific expression of an olfactory receptor transgene. J. Neurosci. 18: 227-236.Google Scholar
  49. Ressler, K. J.,Sullivan, S. L., andBuck, L. B. (1993). A zonal organization of odorant receptor gene expression in the olfactory epithelium. Cell 73: 597-609.Google Scholar
  50. Riesgo-Escovar, J.,Woodard, C.,Gaines, P., andCarlson, J. (1992). Development and organization of the Drosophila olfactory system: An analysis using enhancer traps. J. Neurobiol. 23: 947-964.Google Scholar
  51. Riesgo-Escovar, J. R.,Woodard, C., andCarlson, J. (1994). Olfactory physiology in the maxillary palp requires the visual system gene rdgB. J. Comp. Physiol. A 175: 687-693.Google Scholar
  52. Riesgo-Escovar, J.,Raha, D., andCarlson, J. R. (1995). Requirement for a phospholipase C in odor response: Overlap between olfaction and vision in Drosophila. Proc. Natl. Acad. Sci. USA 92: 2864-2868.Google Scholar
  53. Risch, N., andMerikangas, K. (1996). The future of genetic studies of complex human diseases. Science 273: 1516-1517.Google Scholar
  54. Rodrigues, V. (1980). Olfactory behavior of Drosophila melanogaster. In Siddiqi, O.,Babu, P.,Hall, L. M., andHall, J. C. (eds.), The Development and Neurobiology of Drosophila, Plenum Press, New York, pp. 361-371.Google Scholar
  55. Rodriguès, V., andSiddiqi, O. (1978). Genetic analysis of chemosensory pathway. Proc. Ind. Acad. Sci. 87B: 147-160.Google Scholar
  56. Rouquier, S.,Taviaux, S.,Trask, B. J.,Brand-Arpon, V.,van den Engh, G.,Demaille, J., andGiorgi, D. (1998). Distribution of olfactory receptor genes in the human genome. Nature Genet. 18: 243-250.Google Scholar
  57. Rubin, B. D., andKatz, L. C. (1999). Optical imaging of odorant representations in the mammalian olfactory bulb. Neuron 23: 499-511.Google Scholar
  58. Rubin, G. M. (2000). Comparative genomics of the eukaryotes. Science 287: 2204-2215.Google Scholar
  59. Sengupta, P.,Chou, J. C., andBargmann, C. I. (1996). odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl. Cell 84: 899-909.Google Scholar
  60. Smith, D. P.,Stamnes, M. A., andZucker, C. S. (1991). Signal transduction in the visual system of Drosophila. Annu. Rev. Cell Biol. 7: 161-190.Google Scholar
  61. Speca, D. J.,Lin, D. M.,Sorensen, P. W.,Isacoff, E. Y.,Ngai, J., andDittman, A. H. (1999). Functional identification of a goldfish odorant receptor. Neuron 23: 487-498.Google Scholar
  62. Stocker, R. F. (1994). The organization of the chemosensory system in Drosophila melanogaster: A review. Cell Tissue Res. 275: 3-26.Google Scholar
  63. Stocker, R. F., andGendre, N. (1988). Peripheral and central nervous effects of lonzenge 3: A Drosophila mutant lacking basiconic antennal sensilla. Dev. Biol. 127: 12-24.Google Scholar
  64. Störtkuhl, K. F.,Hovemann, B. T., andCarlson, J. R. (1999). Olfactory adaptation depends on the Trp Ca2+ channel in Drosophila. J. Neurosci. 19: 4839-4846.Google Scholar
  65. Sved, J. A. (1975). Fitness of third chromosome homozygotes in Drosophila melanogaster. Genet. Res. 25: 197-200.Google Scholar
  66. Talluri, S.,Bhatt, A., andSmith, D. P. (1995). Identification of a Drosophila G protein ″ subunit (dGq″-3) expressed in chemosensory cells and central neurons. Proc. Natl. Acad. Sci. USA 92: 11475-11479.Google Scholar
  67. Vassar, R.,Ngai, J., andAxel, R. (1993). Spatial segregation of odorant receptor expression in the mammalian olfactory epithelium. Cell 74: 309-318.Google Scholar
  68. Vassar, R.,Chao, S. K.,Sitcheran, J. M.,Nunez, L.,Vosshal, L. B., andAxel, R. (1994). Topographic organization of sensory projections to the olfactory bulb. Cell 79: 981-992.Google Scholar
  69. Vihtelic, T. S.,Goebl, M.,Milligan, S.,O'Tousa, J. E., andHyde, D. R. (1993). Localization of Drosophila retinal degeneration B, a membrane-associated phosphatidylinositol transfer protein. J. Cell Biol. 122: 1013-1022.Google Scholar
  70. Vosshall, L. B.,Amrein, H.,Morozov, P. S.,Rzhetsky, A., andAxel, R. (1999). A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96: 725-736.Google Scholar
  71. Vosshall, L. B.,Wong, A. M., andAxel, R. (2000). An olfactory sensory map in the fly brain. Cell 102: 147-159.Google Scholar
  72. Woodard, C.,Alcorta, E., andCarlson, J. (1992). The rdgB gene in Drosophila: A link between vision and olfaction. J. Neurogenet. 8: 17-32.Google Scholar
  73. Zhao, H.,Ivic, L.,Otaki, J. M.,Hashimoto, M.,Mikoshiba, K., andFirestein, S. (1998). Functional expression of a mammalian odorant receptor. Science 279: 237-242.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Robert R. H. Anholt
    • 1
  • Trudy F. C. Mackay
    • 2
  1. 1.Departments of Zoology and GeneticsNorth Carolina State UniversityRaleigh
  2. 2.Department of GeneticsNorth Carolina State UniversityRaleigh

Personalised recommendations