Behavior Genetics

, Volume 31, Issue 2, pp 167–177 | Cite as

Courtship and Mating Behaviour of Interspecific Nasonia Hybrids (Hymenoptera, Pteromalidae): A Grandfather Effect

  • L. W. Beukeboom
  • J. van den Assem


Nasonia courtship behaviour includes easily quantifiable, stereotyped components. We analysed displays of N. vitripennis × N. longicornis hybrid males. Most of them performed well-organised displays that were intermediate between the parental species. However, in both reciprocal crosses, a significant bias towards the behaviour of the grandpaternal species was observed. Possible explanations for this effect are a biased recovery of genotypes, either due to nucleo-cytoplasmic interaction or non-mendelian transmission, or differential activation of genes in hybrid females. This study is a first step towards unravelling the genetic architecture of courtship behaviour of Nasonia, which may provide information about factors responsible for species isolation.

Nasonia courtship behaviour interspecific hybrids non-mendelian inheritance reproductive isolation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antolin, M. F., Bosio, C. F., Cotton, J., Sweeney, W., and Strand, M. R. (1996). Intensive linkage mapping in a wasp (Bracon hebetor) and a mosquito (Aedes aegypti) with Single-Strand Conformation Polymorphism analysis of Random Amplified Polymorphic DNA markers. Genetics 143: 1727–1738.Google Scholar
  2. Assem, J. van den (1986). Mating behaviour in parasitic wasps. In: Insect Parasitoids, 13th Symposium of the Royal Entomological Society of London (J. K. Waage, and D. J. Greathead, eds.), pp. 137–167, Academic Press, London.Google Scholar
  3. Assem, J. van den (1996). Mating behaviour. In: Insect Natural Enemies. Practical Approaches to their Study and Evaluation (M. Jervis, and N. Kidd, eds.), pp. 163–221, Chapman and Hall, London.Google Scholar
  4. Assem, J. van den, Jachmann, F., and Simbolotti, P. (1980). Courtship behaviour of Nasonia vitripennis: Some qualitative evidence for the role of pheromones. Behaviour 75: 301–307.Google Scholar
  5. Assem, J. van den, and Werren, J. H. (1994). A comparison of the courtship and mating behavior of three species of Nasonia (Hym., Pteromalidae). J.Insect Behav. 7: 53–66.Google Scholar
  6. Barrass, R. (1960). The effect of age on the performance of an innate behaviour pattern in Mormoniella vitripennis. Behaviour 15: 210–218.Google Scholar
  7. Barrass, R. (1961). A quantitative study of the behaviour of the male Mormoniella vitripennis towards two constant stimulus situations. Behaviour 18: 288–312.Google Scholar
  8. Beukeboom, L. W. (1995). Sex determinatio1n in Hymenoptera: A need for genetic and molecular studies. BioEssays 17: 813–817.Google Scholar
  9. Beukeboom, L. W., and Werren, J. H. (1992). Population genetics of a parasite chromosome: Experimental analysis of PSR in subdivided populations. Evolution 46: 1257–1268.Google Scholar
  10. Beukeboom, L. W., and Werren, J. H. (1993). Deletion analysis of the selfish B chromosome, Paternal Sex Ratio (PSR), in the parasitic wasp Nasonia vitripennis. Genetics 133: 637–648.Google Scholar
  11. Bordenstein, S. R., and Werren, J. H. (1998). Effects of A and B Wolbachia and host genotype on interspecies cytoplasmic incompatibility. Genetics 148: 1833–1844.Google Scholar
  12. Bordenstein, S. R., Drapeau, M. D., and Werren, J. H. (2000). Intraspecific variation in sexual selection in the jewel wasp Nasonia. Evolution 54: 567–573.Google Scholar
  13. Bordenstein, S. R., O'Hara, F. P., and Werren, J. H. (2001). Wolbachia-induced incompatibility precedes other hybrid incompatibilities in Nasonia. Nature 409: 707–710.Google Scholar
  14. Bradshaw, H. D., Wilbert, S. M., Otto, K. G., and Schemske, D. W. (1995). Genetic mapping of floral traits associated with reproductive isolation in monkeyflowers (Mimulus). Nature 376: 762–765.Google Scholar
  15. Breeuwer, J. A. J., and Werren, J. H. (1990). Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature 346: 558–560.Google Scholar
  16. Breeuwer, J. A. J., and Werren, J. H. (1993). Effect of genotype on cytoplasmic incompatibility between two species of Nasonia. Heredity 70: 428–436.Google Scholar
  17. Breeuwer, J. A. J., and Werren, J. H. (1995). Hybrid breakdown between two haploid species: The role of nuclear and cytoplasmic genes. Evolution 49: 705–717.Google Scholar
  18. Cabot, E. L., Davis, A. W., Johnson, N. A., and Wu, C-I (1994). Genetics of reproductive isolation in the Drosophila simulans clade: Complex epistasis underlying hybrid male sterility. Genetics 137: 175–189.Google Scholar
  19. Carson, H. L. (1997). Sexual selection: A driver of genetic change in Hawaiian Drosophila. J.Hered. 88: 343–352.Google Scholar
  20. Carvajal, A. R., Gandarela, M. R., and Naveira, H. F. (1996). A threelocus system of interspecific incompatibility underlies male inviability in hybrids between Drosophila buzzati and D.koepfera. Genetica 98: 1–19.Google Scholar
  21. Colegrave, N., Hollocher, H., Hinton, K., and Ritchie, M. G. (2000). The courtship song of African Drosophila melanogaster. J.Evol.Biol. 13: 143–150.Google Scholar
  22. Coyne, J. A. (1992). Genetics and speciation. Nature 355: 511–513.Google Scholar
  23. Coyne, J. A., and Orr, H. A. (1998). The evolutionary genetics of speciation. Phil.Trans.R.Soc.Lond.B.Biol.Sci. 353: 287–305.Google Scholar
  24. Darling, D. Ch., and Werren, J. H. (1990). Biosystematics of Nasonia (Hymenoptera: Pteromalidae): Two new species reared from birds' nests in North America. Ann.Entom.Soc.Am. 83: 352–370.Google Scholar
  25. Dobzhansky, Th. (1937). Genetics and the Origin of Species. Columbia University Press, New York.Google Scholar
  26. Gadau, J., Page, R. E., and Werren, J. H. (1999). Mapping of hybrid incompatibility loci in Nasonia. Genetics 153: 1731–1741.Google Scholar
  27. Jachmann, F., and Assem, J. van den (1996). A causal ethological analysis of the courtship behaviour of an insect (the parasitic wasp Nasonia vitripennis, Hym., Pteromalidae). Behaviour 133: 1051–1075.Google Scholar
  28. Kyriacou, C. P., and Hall, J. C. (1986). Interspecific genetic control of courtship song production and reception in Drosophila. Science 232: 494–497.Google Scholar
  29. MacDonald, S. J., and Goldstein, D. B. (1999). A quantitative genetic analysis of male sexual traits distinguishing the sibling species Drosophila simulans and D.sechellia. Genetics 153: 1683–1699.Google Scholar
  30. Monk, M. (1988). Genomic imprinting. Genes & Development 2: 921–925.Google Scholar
  31. Nur, U., Werren, J. H., Eickbush, D. G., Burke, W. D., and Eickbush, T. H. (1988). A 'selfish' B chromosome that enhances its transmission by eliminating the paternal chromosomes. Science 240: 512–514.Google Scholar
  32. Orr, H. A. (1995). The population genetics of speciation: The evolution of hybrid incompatibilities. Genetics 139: 1805–1813.Google Scholar
  33. Orzack, S. H., and Gladstone, J. (1994). Quantitative genetics of sexratio traits in the parasitic wasp Nasonia vitripennis. Genetics 137: 211–220.Google Scholar
  34. Otte, D., and Endler, J. A. (1989). Speciation and its Consequences. Sinauer, Sunderland, Mass.Google Scholar
  35. Palopoli, M. F., and Wu, C-I. (1994). Genetics of hybrid male sterility between Drosophila sibling species: A complex web of epistasis is revealed in interspecific studies. Genetics 138: 329–341.Google Scholar
  36. Price, T. (1998). Sexual selection and natural selection in bird speciation. Phil.Trans.R.Soc.Lond.B Biol.Sci. 353: 251–260.Google Scholar
  37. Rieseberg, L. H., Sinervo, B., Linder, C. R., Ungerer, M. C., and Arias, D. M. (1996). Role of gene interaction in hybrid speciation: Evidence from ancient and experimental hybrids. Science 272: 741–745.Google Scholar
  38. Satokangas, P., Liimatainen, J. O., and Koikkala, A. (1994). Songs produced by the females of the Drosophila virilis group of species. Behav.Genetics 24: 263–272.Google Scholar
  39. Skinner, S. W. (1985). Son-killer: A third extrachromosomal factor affecting the sex ratio in the parasitoid wasp Nasonia (= Mormoniella) vitripennis. Genetics 109: 745–759.Google Scholar
  40. Tagawa, J., and Hidaka, T. (1982). Mating behaviour of the braconid wasp Apantheles glomeratus. Mating sequence and the factor for correct orientation of male to female. Appl.Entomol.Zool. 17: 32–39.Google Scholar
  41. Werren, J. H. (1983). Sex ratio evolution under local mate competition in a parasitic wasp. Evolution 37: 116–124.Google Scholar
  42. Werren, J. H., Nur, U., and Eickbush, D. (1987). An extrachromosomal factor causing loss of paternal chromosomes. Nature 327: 75–76.Google Scholar
  43. Wheeler, D. A., Kyriacou, C. P., Greenacre, M. L., Yu, Q., Rutila, J. E., Roshbash, M., and Hall, J. C. (1991). Molecular transfer of a species-specific behavior from Drosophila simulans to Drosophila melanogaster. Science 251: 1082–1085.Google Scholar
  44. Yoshida, S. (1978). Behaviour of males in relation to the female sex pheromone in the parasitoid wasp Anisopteromalus calandrae (Hym., Pteromalidae). Entom.Exp.Appl. 23: 152–162.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • L. W. Beukeboom
    • 1
  • J. van den Assem
    • 1
  1. 1.Section Animal Ecology, Institute of Evolutionary and Ecological SciencesUniversity of LeidenRA LeidenThe Netherlands

Personalised recommendations