Journal of Thermal Analysis and Calorimetry

, Volume 57, Issue 1, pp 225–234 | Cite as

The Vapour Pressure and the Enthalpy of Sublimation: Determination by inert gas flow method

  • X. Zielenkiewicz
  • G. L. Perlovich
  • M. Wszelaka-Rylik
Article

Abstract

A new device, based on the inert gas flow method, for measuring the vapour pressure and the determination of the enthalpy of sublimation in a wide range of temperatures (up to 573 K) is described in this paper. The limits of the flow rate as important experimental parameter were determined for the given instrument. The results of calibration showed a good precision and reproducibility of the measurements of the enthalpy of sublimation. The results of the determination of some derivatives of pyrimidine were presented.

2,4-diamino-6-hydroxypyrimidine enthalpy of sublimation inert gas flow method 1-methyl-4N-methoxycytosine 2,4,6-trihydroxypyrimidine vapour pressure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Zielenkiewicz, A. Zielenkiewicz and K. L. Wierzchowski, J. Sol. Chem., 22 (1993) 975, ibid 23 (1994) 1125.Google Scholar
  2. 2.
    W. Zielenkiewicz, A. Zielenkiewicz and K. L. Wierzchowski, Pure Appl. Chem., 66 (1994) 503.Google Scholar
  3. 3.
    W. Zielenkiewicz, J. Thermal Anal., 45 (1995) 761.Google Scholar
  4. 4.
    M. Kaminski and W. Zielenkiewicz, J. Chem. Thermodynamics, 28 (1996) 153.Google Scholar
  5. 5.
    M. Davies, J. I. Jones, Trans. Faraday Soc., 50 (1954) 1042.Google Scholar
  6. 6.
    E. Morawetz, J. Chem. Thermodynamics, 4 (1972) 455.Google Scholar
  7. 7.
    E. Marti, A. Geoffroy, B. F. Rodorf and M. Szelagiewicz, Proc. of the Sixth Int. Conf. on Thermal Analysis, Birkaeusser Verlag, Basel, Vol. 1, 305 (1980).Google Scholar
  8. 8.
    K. Bayreuther, G. Brauer, M. Farker, K. Nass and K.-H. Schmidt, Int. Laboratory News, May (1994).Google Scholar
  9. 9.
    S. Klosky, L. P. L. Woo and R. J. Flanigan, J. Am. Chem. Soc., 49 (1927) 1280.Google Scholar
  10. 10.
    L. Malaspina, R. Gigli and G. Bardi, J. Chem. Phys., 59 (1973) 387.Google Scholar
  11. 11.
    A. G. Wiedemann and H. P. Waughna, Proc. Toronto Symp. Therm. Anal., 3rd (1970) 233.Google Scholar
  12. 12.
    W. E. Bell, M. C. Garrison and U. Merten, J. Phys. Chem., 64 (1960) 145.Google Scholar
  13. 13.
    R. Chastel, F. Steckel and H. Tachoire, Proc. First. Int. Conf. Calorimetry Thermodynamics. Polish Scientific Publishers: Warsaw 1969, p. 512.Google Scholar
  14. 14.
    M. Colomina, C. Monzon, C. Turrion and J. Layez, Paper of the 5th Experimental Thermodynamics Conference, Lancaster 1972.Google Scholar
  15. 15.
    M. Colomina, P. Jimenez and C. Turrion, J. Chem. Thermodynamics, 14 (1982) 779.Google Scholar
  16. 16.
    J. D. Cox and G. Pilcher, Thermochemistry of organic and organometallic compounds, Academic Press London 1970, p. 643.Google Scholar
  17. 17.
    H. Hirsbrunner, Helv. Chim. Acta, 17 (1934) 477.Google Scholar
  18. 18.
    A. Zielenkiewicz, M. Wszelaka-Rylik, J. Poznański and W. Zielenkiewicz, J. Sol. Chem., 27 (1998) 235.Google Scholar
  19. 19.
    CRC Handbook of Chemistry and Physics, 78th edition, 1997-1998.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • X. Zielenkiewicz
  • G. L. Perlovich
  • M. Wszelaka-Rylik

There are no affiliations available

Personalised recommendations