Journal of Thermal Analysis and Calorimetry

, Volume 57, Issue 1, pp 139–149 | Cite as

Thermochemical Reactivity of Transition Metal Acetates and of A Novel DMSO Solvate of Iron(II) Acetate in Molecular Hydrogen

  • K. Ehrensberger
  • H. W. Schmalle
  • H. R. Oswald
  • A. Reller


The thermal decomposition of acetates of the transition metals Fe, Co, Ni, Mn and Cu in molecular hydrogen has been investigated by means of combined thermogravimetry/mass spectrometry, X-ray diffraction, and transmission as well as scanning electron microscopy. In the context of the reproducible preparation of the parent phases, i.e. the hydrated or anhydrous metal(II) acetates, single crystalline Fe3(CH3COO)6(DMSO)2, a novel DMSO solvate of iron(II) acetate, has been isolated and its crystal structure has been determined by means of X-ray diffraction. For the series of metal(II) acetates it has been found that the course of the thermal degradation in molecular hydrogen, in particular the formation of the gaseous products, strongly depends on the transition metal ion present in the parent compound. The detailed characterisation of the solid products revealed, that phases exhibiting different catalytic activities and selectivities are formed as micro- or nanocrystalline metals and/or metal oxides.

catalytic activities and selectivities thermal decomposition transition metal acetates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Cressely, D. Farkhani, A. Deluzarche and A. Kinnemann, Materials Chem. and Phys., 11 (1984) 413.Google Scholar
  2. 2.
    M. Maciejewski, A. Baiker, H. Viebrock, U. Sazama, P.-M. Wilde and A. Reller, Solid State Ionics, 63–65 (1992) 565.Google Scholar
  3. 3.
    E. J. Grootendorst, R. Pestman, R. M. Koster and V. Ponec, J. Catal., 148 (1994) 261.Google Scholar
  4. 4.
    H.-D. Hardt und W. Möller, Z. Anorg. Allg. Chem., 313 (1961) 57.Google Scholar
  5. 5.
    M. M. P. Dupuy and C. Moreau, Comptes Rendues, 242 (1956) 2242.Google Scholar
  6. 6.
    M. M. P. Dupuy and C. Moreau, Comptes Rendues, 243 (1956) 1635.Google Scholar
  7. 7.
    M. J. Judd, J. Thermal Anal., 6 (1974) 562.Google Scholar
  8. 8.
    D. Alvarez, D. A. Navarro, L. A. Oro and F. G. Beltran, Rev. Acad. Cienc. Exact. Fis.-Quim. Nat. Zaragoza, 27 (1972) 349.Google Scholar
  9. 9.
    R. L. Martin and A. Whitley, J. Chem. Soc., III (1958) 1394.Google Scholar
  10. 11.
    M. Bowker and R. J. Madix, Appl. Surf. Sci., 8 (1981) 293.Google Scholar
  11. 12.
    R. J. Madix, J. L. Falconer and A. M. Suszko, Surface Sci., 54 (1976) 6.Google Scholar
  12. 13.
    A. Reller, C. Padeste and P. Hug, Nature, 329 (1987), 527.Google Scholar
  13. 14.
    C. Padeste, A. Reller and H. R. Oswald, Mater. Res. Bull., 25 (1990) 1299.Google Scholar
  14. 15.
    C. Padeste, H. R. Oswald and A. Reller, Mater. Res. Bull., 27 (1991) 1263.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • K. Ehrensberger
  • H. W. Schmalle
  • H. R. Oswald
  • A. Reller

There are no affiliations available

Personalised recommendations